Dimethyl 3-(4-bromobenzoyl)-7-(N,N-dimethylamino)indolizine-1,2-dicarboxylate

In the title compound, C_{21}H_{19}BrN_{2}O_{5}, the planes of the two methoxycarbonyl moieties are oriented at angles of 7.70 (6) and 69.09 (6)° with respect to that of the indolizine ring. In the solid state, the molecules are held together by weak intermolecular C–H⋯O and C–H⋯Br interactions which form chain and centrosymmetric ring motifs.

Comment

The synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists, because they are important as potential central nervous system depressants, calcium entry blockers, cardiovascular agents, spectral sensitizers and novel dyes (Gubin et al., 1992; Bora et al., 2003). Indolizines have also been tested as antimycobacterial agents against mycobacterial tuberculosis (Gundersen et al., 2003).

The structural investigation of the title compound, (I) (Fig. 1), has been undertaken as a part of our study on the conformational changes caused by different substituents at various positions on the indolizine ring system. The bond lengths and angles in (I) are comparable with those in related structures (Pritchard, 1988; Hema et al., 2003). The non-H atoms of (I) common to two related indolizine derivatives, viz. 3-(4-chlorobenzoyl)-7-(N,N-dimethylamino)-1-phenylindolizine and 3-(2,4-dichlorobenzoyl)-7-(N,N-dimethylamino)-1-
phenylindolizine (Hema et al., 2003), were superimposed on the corresponding atoms of these latter compounds and the r.m.s. deviations were found to be 0.958 and 0.965 A, respectively. The planes of the two methoxy carbonyl moieties deviate from the plane of the indolizine ring to different extents, the angles between the latter plane and those of the C1/C10/O10/O11/C11 and C2/C12/O12/O13/C13 moieties being 7.70 (6)° and 69.09 (6)°, respectively. The dihedral angle across centres of inversion to give the ring motif \( \mathbf{R} \) lies roughly between these two orientations and makes angles of 59.39 (6)° and 20.69 (5)°, respectively, with the planes of the bromophenyl ring and the indolizine ring system.

The crystal packing is stabilized by a number of weak intermolecular \( \text{C} - \text{H} \cdots \text{O} \) and \( \text{C} - \text{H} \cdots \text{Br} \) interactions (Table 1). The \( \text{C} - \text{H} \cdots \text{Br} \) interaction links pairs of molecules across centres of inversion to give the ring motif \( \mathbf{R}_{2}(24) \) (Bernstein et al., 1995).

### Experimental

A mixture of 4-dimethylaminopyridinium 1-(4-bromo)phenacyl chloride (1.4 mmol), dimethylacetylene dicarboxylate (1.6 mmol) and potassium carbonate (1.6 mmol) in dimethylformamide (30 ml) was kept at room temperature overnight. The insoluble materials were removed by filtration. The filtrate was extracted with an ethyl acetate–dilute HCl mixture. The organic layer was evaporated and chromatographed to give (I), which was recrystallized from ethyl acetate (yield, 0.29 g, 55%; m.p. 474–476 K).

### Crystal data

\[
\begin{align*}
\text{C}_{21}\text{H}_{19}\text{BrN}_{2}\text{O}_{5} & \\
M & = 459.29 \\
\text{Triclinic, } \overline{\text{P}} & \\
\alpha & = 7.5238 (2) \text{ Å} \\
b & = 10.2817 (2) \text{ Å} \\
c & = 4.5928 (2) \text{ Å} \\
\beta & = 13.8084 (2) \text{ Å} \\
\gamma & = 87.741 (1) \text{°} \\
\delta & = 79.837 (1) \text{°} \\
\nu & = 57.412 (3) \text{ Å}^3 \\
\text{Z} & = 2 \\
D_{\text{c}} & = 1.570 \text{ Mg m}^{-3} \\
\rho_{\text{calc}} & = 0.98 \text{ Å} \\
\mu & = 2.15 \text{ mm}^{-1} \\
T & = 160 (2) \text{ K} \\
\text{V} & = 971.42 (3) \text{ Å}^3 \\
\end{align*}
\]

### Data collection

| Nonius KappaCCD diffractometer | 4679 reflections with \( l > 2\sigma(l) \) |
| \( \omega \) and \( \phi \) scans with \( x \) offsets | \( \sigma_{\text{max}} = 30.0' \) |
| Absorption correction: multi-scan (SORTAV; Blessing, 1995) | \( h = -10 \rightarrow 10 \) |
| \( T_{\text{min}} = 0.542, T_{\text{max}} = 0.641 \) | \( k = -14 \rightarrow 14 \) |
| 25900 measured reflections | \( l = -19 \rightarrow 18 \) |
| 5684 independent reflections | |

### Refinement

| Refinement | \( w = 1/\sigma^2(P + 0.0525P)^2 + 0.3259P \) |
| \( wR(F^2) = 0.101 \) | where \( P = (F^2 + 2F_c^2)/3 \) |
| \( S = 1.03 \) | \( \Delta \rho_{\text{max}} = 0.38 \text{ e Å}^{-3} \) |
| 5684 reflections | \( \Delta \rho_{\text{min}} = -0.66 \text{ e Å}^{-3} \) |
| 266 parameters | |
| H-atom parameters constrained | |

### Tables

| Table 1 Hydrogen-bonding geometry (Å, °) |
| \( D - \cdots H - A \) | \( D - H \) \( H \cdots A \) | \( D - A \) | \( D - H \) \( H \cdots A \) |
| \( \text{C}13 - \text{H}33\cdots \text{O}12^\text{i} \) | 0.98 | 2.45 | 3.419 (3) | 170 |
| \( \text{C}17 - \text{H}17\cdots \text{O}10^\text{ii} \) | 0.95 | 2.50 | 3.368 (2) | 152 |
| \( \text{C}19 - \text{H}19\cdots \text{O}10^\text{iii} \) | 0.95 | 2.31 | 3.249 (2) | 172 |
| \( \text{C}23 - \text{H}23\cdots \text{O}14^\text{iv} \) | 0.98 | 2.44 | 3.167 (2) | 131 |

The methyl H atoms were constrained to an ideal geometry (\( \text{C} - \text{H} = 0.98 \text{ Å} \)), with \( U_{\text{iso}} \) values of \( 1.5U_{\text{eq}}(\text{C}) \), but were allowed to rotate freely about the \( \text{C} - \text{C} \) bond. All remaining H atoms were placed in idealized positions (\( \text{C} - \text{H} = 0.95 \text{ Å} \)) and constrained to ride on their parent atoms, with \( U_{\text{iso}}(\text{H}) \) values of \( 1.2U_{\text{eq}}(\text{C}) \).

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Version 1.07; Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Thanks are due to the Council of Scientific and Industrial Research (CSIR), India, for the award of a Senior Research Fellowship (2001–2004) to KS. RH thanks the UGC, India, for the award of a Minor Research Project.

### References