Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

## S. Thamotharan, ${ }^{\text {a }}$

V. Parthasarathi, ${ }^{\text {a }}$ * Shanta Mallur, ${ }^{\text {b }}$ Ravindra Kamble, ${ }^{\text {b }}$ Bharati Badami ${ }^{\text {b }}$ and Anthony Linden ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ Postgraduate Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India, and 'Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Correspondence e-mail: vpsarati@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
$R$ factor $=0.052$
$w R$ factor $=0.151$
Data-to-parameter ratio $=19.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## 3-[(7-Acetoxy-4-methylcoumarin-8-yl)methyl]sydnone

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$, the sydnone ring is oriented nearly perpendicular to the plane of the coumarin moiety. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the molecules into a complex network that can be described by $C(X)$ chains ( $X$ is 6,8 and 9 ) and $R_{2}^{2}(20)$ rings.

## Comment

Sydnones are relatively non-toxic, but potent, porphyrinogenic and anti-inflammatory compounds (Thamotharan, Parthasarathi, Sanyal et al., 2003; Thamotharan, Parthasarathi, Hunnur et al., 2003; and references therein). Coumarins ( $2 \mathrm{H}-$ 1-benzopyrans) possess a variety of biological activities such as antibacterial (Ahluwalia et al., 1989), antifungal (Bhakuni \& Chaturvedi, 1984), antimicrobial (Ahluwalia et al., 1987), anticancer (Gschwendt et al., 1984), anti-ulcer (Kyogoku et al., 1979) and antifeedant (Simmonds et al., 1990). It was also found that coumarins display a very strong anti-invasive activity in vitro against human mammary carcinoma cells (Parmar et al., 1994). In view of their importance, the crystal structure of the title compound, (I), was determined.


A view of the molecule of (I), with the atomic numbering scheme, is shown in Fig. 1. The bond lengths and angles in the sydnone moiety in (I) are comparable with those of related compounds (Thamotharan, Parthasarathi, Sanyal et al., 2003; Thamotharan, Parthasarathi, Hunnur et al., 2003). No unusual bond lengths or angles were observed in the coumarin moiety (Vijayalakshmi et al., 2000). The dihedral angle between the planes of the sydnone ring and the coumarin moiety is 79.94 (4) ${ }^{\circ}$.

In the crystal structure, carbonyl atom O5 of the sydnone moiety accepts two different intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, one from the $\mathrm{C} 6-\mathrm{H} 61$ group in one neighbouring molecule and the other from the $\mathrm{C} 6-\mathrm{H} 62$ group in a different neighbouring molecule (Table 1). These two interactions link the molecules into two different continuous chains and each has a graph-set motif of $C(6)$ (Bernstein et al., 1995) running parallel to the $b$ and $c$ axes, respectively. Another carbonyl atom, O8, accepts two different intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, from the $\mathrm{C} 4-\mathrm{H} 4$ and $\mathrm{C} 12-\mathrm{H} 12$ groups in different adjacent molecules. These two interactions also

Received 23 March 2004 Accepted 25 March 2004 Online 31 March 2004
produce two different chains. The former interaction has a graph-set motif of $C(9)$, while the latter has a $C(8)$ motif, both running parallel to the $c$ axis. Atom C 9 is involved in an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction with atom O 18 of a neighbouring centrosymmetrically related molecule. This interaction produces loops that have a graph-set motif of $R_{2}^{2}(20)$. Finally, the disordered atom H194 on C19 has an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction with atom O 1 of the sydnone moiety of another neighbouring centrosymmetrically related molecule. This interaction also links the molecules into dimers and generates a graph-set motif of $R_{2}^{2}(20)$.

## Experimental

The preparation of the title compound will be described in a future publication. Recrystallization from absolute ethanol gave colourless crystals which were suitable for crystallographic analysis (m.p. 453455 K ).

## Crystal data

[^0]$D_{x}=1.515 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4215
$\quad$ reflections
$\theta=2.0-30.0^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=160(2) \mathrm{K}$
Plate, colourless
$0.30 \times 0.30 \times 0.05 \mathrm{~mm}$

Data collection
Nonius KappaCCD diffractometer $\varphi$ and $\omega$ scans with $\kappa$ offsets Absorption correction: none 37980 measured reflections 4057 independent reflections 2403 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0787 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.31 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.151$
$S=1.02$
4056 reflections
211 parameters

Figure 1


View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level. The minor conformation of disordered methyl H atoms is not shown.
$1.2 U_{\text {eq }}(\mathrm{C})$. Reflection 011 was partially obscured by the beam stop and was omitted.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Version 1.07; Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

ST thanks the X-ray Crystallography Facility, Institute of Organic Chemistry, University of Zürich, Switzerland, for providing access to the facility during his visit.

## References

Ahluwalia, V. K., Mann, R. R. \& Bala, S. (1989). Indian J. Chem. Sect. B, 28, 608-610.
Ahluwalia, V. K., Nayal, L., Kaila, N., Bala, S. \& Tahim, A. K. (1987). Indian J. Chem. Sect. B, 26, 384-386.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bhakuni, D. S. \& Chaturvedi, R. (1984). J. Nat. Prod. 47, 585-591.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gschwendt, M., Kittstein, W., Fuerstenberger, G. \& Mark, F. (1984). Cancer Lett. 25, 177-185.
Kyogoku, K., Hatayama, K., Yokimori, S., Saziki, R., Nakane, S., Sasajima, M., Sawada, J., Ohzeki, M. \& Tanaka, I. (1979). Chem. Pharm. Bull. 27, 29432953.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Parmar, V. S., Jain, R., Sharma, S. K., Vardhan, A., Jha, A., Taneja, P., Singh, S., Vyncke, B. M., Bracke, M. E. \& Mareel, M. M. (1994). J. Pharm. Sci. 83, 1217-1221.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Simmonds, M. S. J., Blaney, W. M., Monache, F. D. \& Marini-Bettolo, G. B. (1990). J. Chem. Ecol. 16, 365-380.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thamotharan, S., Parthasarathi, V., Hunnur, R. K., Shinge, P. S., Badami, B. \& Schenk, K. J. (2003). Acta Cryst. E59, o1762-o1763.
Thamotharan, S., Parthasarathi, V., Sanyal, R., Badami, B. \& Linden, A. (2003). Acta Cryst. E59, o894-o896.

Vijayalakshmi, L., Parthasarathi, V., Varu, B., Dodia, N. \& Shah, A. (2000). Acta Cryst. C56, e401-e 402.


[^0]:    $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{6}$
    $M_{r}=316.27$
    Monoclinic, $P 2_{1 / c} / c$
    $a=11.5067$ (3) $\AA$
    $b=13.1916$ (3) $\AA$
    $c=9.1773(2) \AA$
    $\beta=95.6210(9)^{\circ}$
    $V=1386.34(6) \AA^{3}$
    $Z=4$

