TiGePt – a study of Friedel differences

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html
The X-ray single-crystal diffraction intensities of the intermetallic compound TiGePt were analysed. These showed beyond doubt that the crystal structure is non-centrosymmetric. The analysis revolves around the resonant-scattering contribution to differences in intensity between Friedel opposites hkl and $-hkl$. The following techniques were used: R_{merge} factors on the average (A) and difference (D) of Friedel opposites; statistical estimates of the resonant-scattering contribution to Friedel opposites; plots of $2A_{\text{obs}}$ against $2A_{\text{model}}$ and of D_{obs} against D_{model}; the antisymmetric D-Patterson function. Moreover it was possible to show that a non-standard atomic model was unnecessary to describe TiGePt. Two data sets are compared. That measured with Ag $K\alpha$ radiation at 295 K to a resolution of 1.25 Å is less conclusive than the one measured with Mo $K\alpha$ radiation at 100 K to the lower resolution of 0.93 Å. This result is probably due to the fact that the resonant scattering of Pt is larger for Mo $K\alpha$ than for Ag $K\alpha$ radiation.

1. Introduction

In their study of a structural transformation with negative-volume expansion of the intermetallic compound TiGePt, Ackerbauer et al. (2012) had considerable trouble deciding whether the space group of the low-temperature phase was centrosymmetric or not. Neutron powder diffraction was applied to the problem as the scattering lengths of Ti and Ge are markedly different. Supporting the experimental results with theoretical calculations, these authors were able to show conclusively that the crystal structure of the low-temperature (LT) phase of TiGePt is non-centrosymmetric. Ackerbauer et al. (2012) also studied the crystal structure of the high-temperature phase (> 1158 K) of TiGePt which surprisingly is 10% denser, and has a lower symmetry, than LT-TiGePt. Moreover, Ackerbauer et al. (2012) proposed a mechanistic model for the phase transformation between the low- and high-temperature phases.

In the current paper we have taken an alternative approach to the determination of the symmetry of LT-TiGePt. Single-crystal X-ray diffraction measurements are used and we deal principally with the analysis of the intensities of Friedel differences. The average and difference of Friedel opposites, both observed and model, are defined as follows: $A(hkl) = \frac{1}{2}(|F(hkl)|^2 + |F(-hkl)|^2)$, $D(hkl) = |F(hkl)|^2 - |F(-hkl)|^2$. Recent publications of particular relevance to the current paper are...
Flack et al. (2011), Parsons et al. (2012), Parsons et al. (2013) and other papers cited therein.¹

LT-TiGePt crystallizes in the cubic MgAgAs-type structure. The latter can be regarded as a ternary ordered variant of the CaF$_2$ type. The Ti and Ge atoms are located at the positions of the F atoms, and the Pt atom on the Ca site, occupying one half of the tetrahedral voids. The Ti and Ge atoms have four Pt neighbours in a tetrahedral arrangement. The Pt atom is in a cubic environment, built up of two interpenetrating tetrahedra of Ti and Ge atoms. This structural arrangement is clearly displayed in Fig. 1. Ackerbauer et al. (2012) should be consulted for complete information on the crystal structures of TiGePt.

2. Data and structure

Two sets of intensity data were measured from the same crystal specimen and these are labelled Mo and Ag, respectively. The diffraction data set collected in Ackerbauer et al. (2012) was used here as the Ag data. Relevant characteristics are given in Table 1, which also includes the values of the resonant-scattering contributions for Ti, Ge and Pt. No evidence of twinning was found from the shape of the crystal. A semi-empirical absorption correction using spherical harmonics derived from an assessment of symmetry-equivalent intensities was applied to the intensity data. Fig. 2 shows the distributions of $|F|^2u(|F|^2)$ against sin θ/λ, and illustrates the differences [absolute values of $|F|^2u(|F|^2)$ and ranges of sin θ/λ] and similarities [decay of $|F|^2u(|F|^2)$ and scatter at the same value of sin θ/λ] of the two data sets. u$(|F|^2)$ is the

¹This study arose in a singular way. The crystal of TiGePt used for structure determination by Ackerbauer et al. (2012) was submitted to the 2011 Zurich School of Crystallography (Linden & Buergi, 2008; http://www.chem.uzh.ch/linden/zsc) by one of the 20 student-participants (S.-V. Ackerbauer) as her project study. Diffraction measurements (Mo Kα radiation) were made by the school organizers and the student had to solve and refine the project structure, once two example structures provided by the school had been completed. The intermetallic compound TiGePt is atypical in its chemical composition and symmetry compared with most crystals submitted by the other student participants. At an R value of 1.1%, the study of TiGePt was still producing furrowed brows amongst the ten highly experienced tutors and the student. The values of statistics concerning the fit of Friedel opposites, described below, looked weird. In particular, it was not entirely clear whether the space group was non-centrosymmetric or not, and in the hustle and bustle of the school, there was no time to pursue these problems further. A lively e-mail discussion was undertaken following the school and its results are presented in this paper.
In the further analysis of this structure, parameters described in terms of the single parameter site. For this case, one finds the appropriate site occupation occupying the Ge site and some Ge atoms occupying the Ti site. For the fully ordered, non-centrosymmetric, space group $Fm\bar{3}m$ (No. 225), the crystal structure has become effectively centrosymmetric by the atomic displacement parameters on the Ge and Ti atoms. However, for the chiral (non-centrosymmetric) crystal structure of potassium hydrogen 2R,3R tartrate, it was found that whereas the R_{merge} values on $|F|^2$ weakly indicated the correct point group, the indications of those on D were unequivocally in favour of the chiral crystal structure. Moreover, the study of the centrosymmetric crystal structure of 1-methyl-4-oxotetrahydro-2H-imidazol-2-2-iminium tetrachloro-copper(II) showed almost identical R_{merge} values on either $|F|^2$ or D for all point groups in the Laue class. Most unfortunately, very few such studies have been undertaken and the literature does not provide helpful background information. Further, in studying Table 3 it should be noted that the R_{merge} value on D in a centrosymmetric point group is 100%, not by coincidence, but by definition.

The model of the ordered non-centrosymmetric crystal structure of TiGePt is described in the space group $F\bar{4}3m$ (No. 216), $Z = 4$, $a \approx 5.92$ Å, with the atomic positions indicated in Table 2. All atomic coordinates are fixed on special positions and the atomic site symmetries force the harmonic atomic displacement parameters to be isotropic. Study of the phase diagram shows that the LT-TiGePt phase occurs at the equiatomic stoichiometric composition without any homogeneity range (Ackerbauer et al., 2012). One must, however, allow for the partial mixed occupation of different crystallographic sites, in particular the possibility of some Ti atoms occupying the Ge site and some Ge atoms occupying the Ti site. For this case, one finds the appropriate site occupation parameters described in terms of the single parameter p shown in Table 2. A value of $p = 1$ corresponds to the fully ordered non-centrosymmetric structure. However, for $p = 1/2$ (with identical atomic displacement parameters on the Ge and Ti sites), the crystal structure has become effectively centrosymmetric, space group $Fm\bar{3}m$ (No. 225), with Pt in site 4b and mixed Ge/Ti occupation of site 8e of that space group. To help in the further analysis of this structure, Appendix A gives the expressions for the average (A) and difference (D) Friedel intensities for the stoichiometric, fully occupied, non-centrosymmetric model structure. The Debye–Waller factors have not been included in these expressions. A least-squares refinement of the Mo data with variable p converges to a value of p close to unity, $p = 1.16$ (5), $U_{Ti} = U_{Ge} = 0.00206$ (6) Å2 and $U_{Pt} = 0.00169$ (3) Å2.

Table 2

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>Site symmetry</th>
<th>Fully ordered</th>
<th>Site occupation</th>
<th>Mixed-occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>4a</td>
<td>$F\bar{4}3m$</td>
<td>0 0 0</td>
<td>1</td>
<td>$1 - p$</td>
</tr>
<tr>
<td>Ge</td>
<td>4b</td>
<td>$F\bar{4}3m$</td>
<td>1 1 1</td>
<td>0</td>
<td>p</td>
</tr>
<tr>
<td>Pt</td>
<td>4c</td>
<td>$F\bar{4}3m$</td>
<td></td>
<td>1</td>
<td>$1 - p$</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>R_{merge} (%)</th>
<th>$m\bar{3}m$</th>
<th>432</th>
<th>43m</th>
<th>$n\bar{3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s (Mo)</td>
<td>1.53</td>
<td>1.35</td>
<td>1.05</td>
<td>1.41</td>
</tr>
<tr>
<td>R_s (Mo)</td>
<td>0.71</td>
<td>0.71</td>
<td></td>
<td>0.71</td>
</tr>
<tr>
<td>R_b (Mo)</td>
<td>100</td>
<td>158</td>
<td>63.3</td>
<td>100</td>
</tr>
<tr>
<td>$R_{1/2}$ (Ag)</td>
<td>4.28</td>
<td>3.62</td>
<td>3.69</td>
<td>3.30</td>
</tr>
<tr>
<td>R_s (Ag)</td>
<td>2.74</td>
<td>2.74</td>
<td>2.74</td>
<td>2.74</td>
</tr>
<tr>
<td>$R_{1/2}$ (Ag)</td>
<td>100</td>
<td>102</td>
<td>98</td>
<td>100</td>
</tr>
</tbody>
</table>

R_{merge} tests

Techniques exploiting the differences in intensities between Friedel opposites and based on the familiar R_{merge} (R_{int}) values which attempt to detect the point group of the crystal are described in this section. These techniques are to be applied at the outset of a structure analysis when no atomic model of the crystal structure is available. Although full details are given in §3 of Parsons et al. (2012), it is useful to recall briefly the main results of that work. For the chiral (non-centrosymmetric) crystal structure of potassium hydrogen 2R,3R tartrate, it was found that whereas the R_{merge} values on $|F|^2$ weakly indicated the correct point group, the indications of those on D were unequivocally in favour of the chiral crystal structure. Moreover, the study of the centrosymmetric crystal structure of 1-methyl-4-oxotetrahydro-2H-imidazol-2-2-iminium tetrachloro-copper(II) showed almost identical R_{merge} values on either $|F|^2$ or D for all point groups in the Laue class. Most unfortunately, very few such studies have been undertaken and the literature does not provide helpful background information. Further, in studying Table 3 it should be noted that the R_{merge} value on D in a centrosymmetric point group is 100%, not by coincidence, but by definition.

The Laue class of TiGePt was assumed to be $m\bar{3}m$ so, according to Table 2 of Parsons et al. (2012), the data files of the observed intensities of TiGePt merged and averaged in point group 23 were obtained. The set of 4 reflections ($hk\bar{l}$, $hk\bar{l}$, $kh\bar{l}$, $kh\bar{l}$) are symmetry-equivalent in the point group $m\bar{3}m$.

![Figure 2](image-url)
but not so in 23. The numbers of reflections and sets of reflections in the various classes of general and special reflections are given in detail in Table 1 (see the m3m entry in Table 1 of Parsons et al., 2012, for the specification of the general and special reflections in m3m). The number of incomplete sets of reflections is very small so the data sets were considered to be entirely satisfactory for the current analysis.

Table 3 shows the R_merge values for the 11 (Mo) and 37 (Ag) sets of m3m general reflections with all 4 measurements in the set. For TiGePt the R_merge values on the |F|^2 seem to indicate that the point group is 43m for the Mo data set and m3 for the Ag data set. However, with the same data and calculating with D, it is very clear for the Mo data set that 43m is a better choice than m3 or m3m as the point group of the crystal. The results of the Ag data set are inconclusive. No atomic model was used in coming to this conclusion but an inherent problem with TiGePt is the small number of data available.

4. Friedel

Flack & Bernardinelli (2008) have shown that the product u.Friedelstat usually lies in the range of values between 6 and 10, where u is the standard uncertainty of the Flack parameter (Flack, 1983) and Friedelstat is a statistical estimate of the ratio of the root-mean-square Friedel difference to the mean of the Friedel average. Friedelstat is calculated using the chemical composition of the compound and the wavelength of the X-radiation and takes values for TiGePt of 733 with Mo Ka radiation and 512 with Ag Ka radiation. All Friedel values are given in Table 4. The best least-squares refinement with variable p and independent U_Ge and U_Ti produced a value of the Flack parameter, x(u), of 0.08 (13) for the Mo data set and −0.04 (24) for the Ag data set. Consequently, for TiGePt we find u.Friedelstat = 95 for Mo and = 123 for Ag, far outside the normal range of values of 6–10. One should seek to understand how this discrepancy might have occurred. It would seem that the values of Friedelstat that have been used are too large. The theoretical derivation of Friedelstat presumes a large number of general acentric Bragg reflections, atoms that are situated only in general positions without any pseudosymmetry, and space group P1. None of these axioms applies to TiGePt. Flack & Shmueli (2007) derived the corresponding formulae for a structure in P1 with a centrosymmetric substructure. These show that with only one atom in a centrosymmetric arrangement in a host of non-centrosymmetrically arranged atoms, the value of Friedelstat is unchanged, whereas for an entirely centrosymmetric structure, Friedelstat becomes zero. The formulae for A_model and D_model (Appendix A) for the 43m model of TiGePt needed to calculate the Friedelmodel show that acentric reflections with hkl all even have D_model = 0 due to all atoms occupying special positions in the unit cell. Using these expressions, which take account of the atomic positions in the crystal structure, one calculates the Friedelmodel values given in Table 4.

Section 2 of Parsons et al. (2012) presents a procedure to determine the status of centrosymmetry in a structure by the comparison of Friedelstat with Friedelobs derived from the measured diffraction intensities of acentric reflections. Friedelobs for TiGePt was calculated using the procedure presented by Parsons et al. (2012). Values for both data sets are given in Table 4. The standard interpretation of a Friedelobs much smaller than Friedelstat is that the crystal structure is centrosymmetric or non-centrosymmetric but twinned by inversion in a proportion close to 50:50. An alternative interpretation, particularly appropriate to TiGePt, is that a large subset of the intensities data is derived from centrosymmetric projections of the crystal structure or from reflection classes whose Friedel differences happen to be zero as a consequence of special atomic positions. In addition, the average crystal structure of LT-TiGePt may lose its non-centrosymmetric character due to partially mixed occupations of the Ti and Ge atomic sites.

In all, these approaches show that the diffraction data of TiGePt have a strong centrosymmetric contribution, and leaves the nagging doubt that the crystal structure of TiGePt might indeed be centrosymmetric.

5. A_D and D_obs against D_model plots

Flack et al. (2011) introduced the D_obs against D_model plot as a means of validating the intensity data and structural model of a non-centrosymmetric crystal structure. Parsons et al. (2012) have improved this technique in the 2AD plot. Satisfactory plots of D_obs against D_model and 2A_model show data points distributed about a straight line of slope 1 passing through the origin. Data sets for which the D_obs values are dominated by random uncertainties and systematic error show a D_obs against D_model plot where the data points are arranged along the D_obs axis at D_model = 0. The latter distribution is also shown by centrosymmetric structures. To assess the overall fit of the data, the figures also include D_obs − D_model and 2A_obs − 2A_model values of all reflections, displayed at constant abscissa. These hence show the spread of the deviations of 2A and D, and represent the uncertainties on the individual measurements achieved by the structure refinement.

For TiGePt, the plots of A_obs against A_model for the two data sets display the required distribution of points about a straight line of slope 1 passing through the origin. The domain of values of |D_obs| does not overlap that of 2A_obs as is usually the case. To make the presentation of the 2AD plot as meaningful and as clear as possible, we chose to plot only the 2A_obs 2A_model data points of the 9 reflections with the lowest value of 2A_obs. All of these 9 weak reflections had hkl all even with h + k + l = 4n + 2. In this way the overall form both of D_obsD_model and of the weak 2A_obs2A_model data points can be

| Table 4 |
| Friedel values for TiGePt from the Mo and Ag data sets. |
Mo data set	Ag data set	
Friedelstat	733	512
Friedelmodel	80	51
Friedelobs (all m3m general hkl)	18	67
Friedelobs (hkl all even)	15	49
Friedelobs (hkl all odd)	19	83
centric reflections. In the second class, hkl all odd, with some imagination, one could say that the data points follow the ideal line of slope 1 passing through the origin. The basis for this interpretation is that a very large proportion of the data points lie in the first and third quadrants. The spread of the hkl all odd reflections is very wide. The domain of $|D_{\text{obs}}|$ values in the two classes is approximately the same suggesting that the same random uncertainties and systematic errors affect both classes. In the hkl all odd class, the domain of $|D_{\text{obs}}|$ values is approximately twice that of $|D_{\text{model}}|$ indicating the presence of systematic errors in these intensity data. For the Ag data set in Fig. 4(b), one sees no fit between D_{obs} and D_{model}, the range of $|D_{\text{model}}|$ values being much smaller than that of $|D_{\text{obs}}|$. R values are given in Table 5. For comparison the lowest R_χ value that we have found to date in other studies is 29% (Flack, 2013). The D_{obs} against D_{model} plot from a refinement with $p = 1/2$

Figure 3
2AD plots of TiGePt showing $2A_{\text{obs}}$ against $2A_{\text{model}}$ for the 9 weakest reflections and D_{obs} against D_{model} for all Friedel pairs. On the left of the plot, $D_{\text{obs}} - D_{\text{model}}$ and $2A_{\text{obs}} - 2A_{\text{model}}$ values of all reflections are displayed at constant abscissa. (a) Mo data set; (b) Ag data set. See footnote to §5.

seen. The plots are drawn for the structure refinement with fixed $p = 1$ and independent variables U_{Ge} and U_{Ti}. The 2AD plots are shown in Fig. 3. For the Mo data set, the fit of $2A_{\text{obs}}$ to $2A_{\text{model}}$ is good even for the 9 weak reflections, whereas that of the Ag data set is much less satisfactory.\(^3\)

Fig. 4 shows the D_{obs} against D_{model} parts of Fig. 3 magnified. The acentric reflections fall into two distinct classes according to their reflection indices as expected from the formulæ for D_{model} given in Appendix A. In the first class, hkl all even, the data points for the Mo data set in Fig. 4(a), are distributed along the line $D_{\text{model}} = 0$ as though they were

\(^3\)It is arbitrary whether the $D_{\text{obs}}(hkl), D_{\text{model}}(hkl)$ data point is plotted as $D_{\text{obs}}(hkl), D_{\text{model}}(hkl)$ or as $D_{\text{obs}}(hkl), D_{\text{model}}(hkl) = -D_{\text{obs}}(hkl), -D_{\text{model}}(hkl)$. Indeed both points could be plotted. In Figs. 3 and 4, just one point corresponding to hkl with all positive integers has been plotted.

Figure 4
D_{obs} against D_{model} of TiGePt. (a) Mo data set; (b) Ag data set. See footnote to §5.
and independent variables $U(0,0,0)$ and $U(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ looks similar to Fig. 4(a) with like R values, whereas with $p = \frac{1}{2}$ and $U(0,0,0)$ = $U(\frac{1}{2},\frac{1}{2},\frac{1}{2})$, all reflections have $D_{\text{model}} = 0$ and the structure is centrosymmetric.

In a similar way to the results of §4, the D_{obs} against D_{model} plots do not contain convincing evidence that the structure is really non-centrosymmetric. Changes in the value of p, U_{Ge} and U_{Pt} can drastically modify the appearance of the plot to the point of making it like that of a centrosymmetric crystal.

6. Necessity of a non-standard model

In the intensity data of TiGePt, there are sets of reflections of identical value of $h^2 + k^2 + l^2$, e.g. for $h^2 + k^2 + l^2 = 99$ there are the following three reflections: 339, 177 and 557. In the expressions for A and D of the standard model given in Appendix A, the reflections in these sets have identical values of A_{model} and D_{model}. Any departure in the corresponding observed values from this equality indicates that the real crystal structure deviates from the standard model by way of either complex static atomic displacements, or anharmonic thermal motion or non-spherical atomic electron density. Despite the small number of such sets of reflections we have nevertheless analysed the corresponding observed values. The R_{merge} evaluates to 0.83% (Mo) and 3.13% (Ag). These values are slightly less than the R_{int} of each whole data set and indicate that there is no need to extend the model beyond the standard one.

7. A- and D-Patterson functions

Background information on the A- and D-Patterson functions is given in §6 of Flack et al. (2011). Suffice it to say that both show the positions of interatomic vectors in the crystal structure. The A-Patterson function is centrosymmetric, it is calculated with the average intensity of Friedel opposites (hkl and hkl') and it has peaks with a height determined essentially by Z_iZ_j, where Z_i is the atomic number of atom i. Consequently one sees all interatomic vectors in an A-Patterson map. The D-Patterson function is antisymmetric, it is calculated with the difference intensity of Friedel opposites and it has peaks with a height determined by $(f_i^0f_j^0 - f_i^0f_j^0)$ where f_i and f_j are the real and imaginary components of the atomic scattering factor of atom i. Consequently, one only sees interatomic vectors between atoms of different chemical elements in a D-Patterson map. The value of a D-Patterson function of a centrosymmetric structure is zero everywhere.

The coordinates of the atoms in the structure of TiGePt given in Table 2 imply the interatomic vectors given in Table 6. All of them appear along $[u u u]$ and consequently the A- and D-Patterson functions have been calculated only along this line.

Fig. 5 shows the A_{obs}- and D_{obs}-Patterson functions of TiGePt along the line $[u u u]$ for the Mo data set. The A_{obs}-Patterson map shows large peaks at $u = 0$, corresponding to the $\text{Ge} \rightarrow \text{Ge}$, $\text{Ti} \rightarrow \text{Ti}$ and $\text{Pt} \rightarrow \text{Pt}$ self-vectors; at $u = 0.25$, corresponding to the $\text{Pt} \rightarrow \text{Ge}$ and $\text{Pt} \rightarrow \text{Ti}$ vectors; and at $u = 0.5$, corresponding to the $\text{Ti} \rightarrow \text{Ge}$ vectors, see Table 6. In the intermediate regions, the A_{obs}-Patterson map is close to the background level of zero. One notes that the D_{obs}-Patterson map is also close to zero on the scale of the A_{obs}-Patterson function and one cannot discern its structure in Fig. 5. A plot (not shown) of the A_{model}- and D_{model}-Patterson maps for a non-centrosymmetric fully ordered model of TiGePt is essentially identical to Fig. 5, confirming the main details of the structural model.

Fig. 6 shows the D_{obs}- and D_{model}-Patterson map of TiGePt along the line $[u u u]$ for the Mo data set. The model is that of the non-centrosymmetric and fully ordered structure. There is just one peak in the D_{obs}-plot at $u = 0.25$, corresponding to the $\text{Ge} \rightarrow \text{Pt}$ and $\text{Pt} \rightarrow \text{Ti}$ interatomic vectors. There is no peak at $[0 0 0]$ as the interatomic vectors at this point are self-vectors of zero height in a D-Patterson function. Likewise there is no
peak at $[\frac{1}{2} \frac{1}{2} \frac{1}{2}]$ as this point contains contributions from the Ti \rightarrow Ge and Ge \rightarrow Ti vectors which annihilate one another. The rest of the D_{obs}-Patterson map is a noisy background rising to its largest value of $|P|$ of 137 066, about 20% of the peak value 620 750 at $u = 0.25$. The D_{model}-Patterson map has a peak at the same place as the D_{obs}-Patterson map (at $u = 0.25$) and with the same height within experimental uncertainty. There is thus excellent agreement between the observed and model Patterson functions for the Mo data set. Unsurprisingly, the background of the D_{model}-Patterson map is less noisy than that of the D_{obs}-Patterson. The observation of the peak at $u = 0.25$ in the D_{obs}-Patterson map is most significant. This peak would occur neither with a centrosymmetric structure nor with a non-centrosymmetric crystal twinned by inversion in a ratio close to 50:50. The D_{obs}-Patterson map proves beyond doubt that the crystal structure is non-centrosymmetric, space group $F\overline{4}3m$, and the crystal measured is not twinned by inversion. The non-centrosymmetric fully ordered model reproduces this peak entirely satisfactorily.

For the Patterson maps calculated from the Ag data set, the D_{obs} and A_{obs} plots (not shown) correspond very closely to those presented in Fig. 5. Likewise the D_{model} and A_{model} plots (not shown) correspond very closely to those from the Mo data set. However, the D_{obs}-Patterson map for the Ag data set shown in Fig. 7 is far more noisy than that in Fig. 6 for the Mo data. This is often observed in residual density maps and is most probably caused by the larger range of $\sin \theta \lambda$. Also reference to Table 1 shows a large difference in f_00 of Pt for the two radiations. One could not conclude from Fig. 7 that the structure is definitely non-centrosymmetric.

8. Concluding remarks

For the intermetallic compound TiGePt with a non-centrosymmetric space group but atoms in positions of high point symmetry, statistics that are based only on observed values of D give the most reliable results in indicating whether the crystal structure is non-centrosymmetric or not. In particular, we note that the R_{merge} on A_{obs} and D_{obs} of complete sets of $m\overline{3}m$ general reflections and the D-Patterson maps work very well with the Mo data. These unequivocally indicate that the structure is non-centrosymmetric.

The ordered picture of the structure of TiGePt (i.e. the non-centrosymmetric one) is further supported by coherent-potential approximation (CPA) calculations of the band structure, which reveal a significantly higher energy of 1.2 eV per formula unit for the disordered structure in the space group $Fm\overline{3}m$ (Ackerbauer et al., 2012).

The results presented in the current paper confirm the contention of Flack et al. (2011) that the A- and D-Patterson maps are useful techniques to employ in the validation of a crystal-structure determination. In general, peaks and troughs occurring at identical positions in an $A_{\text{obs}} - A_{\text{model}}$ and a $D_{\text{obs}} - D_{\text{model}}$ Patterson map of a crystal-structure determination are strong indications of some weakness in the structural model. The major current handicap to the use of these Patterson functions is the lack of software.

From the evidence presented in this paper, one discerns a distinct difference in the potentialities of the data set measured at 100 K with Mo $K\alpha$ radiation from that at 295 K with Ag $K\alpha$ radiation. Ag $K\alpha$ is a natural choice for a heavy element compound with a small unit cell if the atomic parameters, both positional and displacement, are of prime interest. However, this data, due to the lower resonant scattering especially for Pt (see Table 1), does not lead to a viable study of the absolute structure. With Mo $K\alpha$ radiation one can make good use of the intensity differences between Friedel
opposites, even though there are fewer data for determining the atomic parameters. Thus, with the data available to this study, one sees that some techniques make a clearer distinction than others between two models. Moreover, the present work also suggests that for a problem as difficult as deciding whether TiGePt is centrosymmetric or not, a more conclusive answer requires up to three experiments at the absorption edges of Pt, Ti and Ge rather than higher resolution data at a single wavelength. Such additional experiments are beyond the scope of the current paper.

APPENDIX A
Expressions for A_{model} and D_{model} for stoichiometric TiGePt with fully occupied sites

\begin{align*}
H &= h + k + l \\
f &= f^0 + f' \\
\phi_{GT} &= (2p - 1)(f_{\text{Ge}} - f_{\text{Ti}}) \\
\phi_{GT}' &= (2p - 1)(f_{\text{Ge}}' - f_{\text{Ti}}') \\
A(H = 4n) &= \left[f_{\text{Pt}} + f_{\text{Ge}} + f_{\text{Ti}}\right]^2 + \left[f_{\text{Pt}}' + f_{\text{Ge}}' + f_{\text{Ti}}'\right]^2 \\
D(H = 4n) &= 0
\end{align*}

\begin{align*}
A(H = 4n + 2) &= \left[f_{\text{Pt}} - f_{\text{Ge}} - f_{\text{Ti}}\right]^2 + \left[f_{\text{Pt}}' - f_{\text{Ge}}' - f_{\text{Ti}}'\right]^2 \\
D(H = 4n + 2) &= 0
\end{align*}

\begin{align*}
A(H = 4n + 1) &= f_{\text{Pt}}^2 + \phi_{GT}^2 + f_{\text{Pt}}'^2 + \phi_{GT}'^2 \\
D(H = 4n + 1) &= 4f_{\text{Pt}}\phi_{GT}' - 4\phi_{GT}f_{\text{Pt}}' \\
A(H = 4n - 1) &= f_{\text{Pt}}^2 + \phi_{GT}^2 + f_{\text{Pt}}'^2 + \phi_{GT}'^2 \\
D(H = 4n - 1) &= -4f_{\text{Pt}}\phi_{GT}' + 4\phi_{GT}f_{\text{Pt}}'
\end{align*}

References