Dimethyl 1-(3-chloro-4-methylphenyl)pyrazole-3,4-dicarboxylate S. Thamotharan, V. Parthasarathi, R. Sanyal, V. Badami Bharati and Anthony Linden

[^0]Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Thamotharan, ${ }^{\text {a }}$

V. Parthasarathi, ${ }^{\text {a* }}$ R. Sanyal, ${ }^{\text {b }}$
V. Badami Bharati ${ }^{\text {b }}$ and Anthony Linden ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan
University, Tiruchirappalli 620 024, India,
${ }^{\mathbf{b}}$ Post-Graduate Department of Studies in Chemistry, Karnatak University, Dharwad-580 003, India, and 'Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190,
CH-8057 Zürich, Switzerland

Correspondence e-mail: vpsarati@yahoo.com

Key indicators
Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.116$
Data-to-parameter ratio $=21.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Dimethyl 1-(3-chloro-4-methylphenyl)-pyrazole-3,4-dicarboxylate

The dihedral angle between the phenyl and pyrazole moieties of the title compound, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$, is 8.66 (8) ${ }^{\circ}$. In the solid state, the symmetry-related molecules are linked by intermolecular $\mathrm{C}-\mathrm{H}$. . O-type hydrogen bonds to form a continuous chain, which runs parallel to the c axis.

Comment

Studies on new classes of pharmaceuticals, agrochemicals and heterocycles are finding greater attention, because of their importance as precursors in the synthesis of pyrazolo-fused heterocycles (Hiremath et al., 1995). Pyrazoles and their derivatives have been reported to show analgesic and antiinflammatory activities (Liu et al., 1998; Morimoto et al., 1997). The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of the title compound, (I).

(I)

The bond lengths and angles in (I) are comparable to those found in related compounds (particularly, $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 5>$ $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3$ and $\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4>\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$; Foces-Foces \& Trofimenko, 2001). The widening of the exocyclic angles C4-C3-C13 [129.16 (13) ${ }^{\circ}$] and C3-C4-C16 [128.16 (13) ${ }^{\circ}$] from 120° may be due to the steric interaction between atoms O 16 and O 13 [O16 $\cdots \mathrm{O} 13=3.006(2) \AA$ A. The dihedral angle between the phenyl and pyrazole moieties is $8.66(8)^{\circ}$. The exocyclic angle C6-N1-C5 [128.28 (12) ${ }^{\circ}$] deviates significantly from the normal value (Lapasset \& Falgueirettes, 1972). This may be due to the steric repulsion between atoms H5 of the pyrazole ring and H 11 of the phenyl ring $[\mathrm{H} \cdots \mathrm{H}=2.28 \AA$]. The dihedral angles between the pyrazole moiety and the 3,4-methoxycarbonyl groups are 38.86 (8) and $19.47(7)^{\circ}$, respectively.

In the crystal structure, glide-related molecules are linked by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$-type hydrogen bonds (Table 2), having a binary graph-set motif of $R_{2}^{1}(7)$ (Bernstein et al., 1995), to form a continuous chain, which runs parallel to the c axis.

Received 8 November 2002
Accepted 13 November 2002
Online 19 December 2002

Figure 1
View of the asymmetric unit of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

Experimental

To a solution of 3-(3-chloro-4-methylphenyl)sydnone (0.2105 g , 0.001 mol) in dry xylene $(5 \mathrm{ml})$, dimethyl acetylene dicarboxylate ($\mathrm{DMAD} ; 0.1563 \mathrm{~g}, 0.0011 \mathrm{~mol}$) was added and the reaction mixture was refluxed for 2 h at 403 K . The solvent was removed in vacuo and the residue washed with petroleum ether. The resulting solid was crystallized from ethanol.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{4}$
$M_{r}=308.72$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=8.2279$ (1) A
$b=15.1992$ (2) \AA
$c=11.6764$ (2) \AA
$\beta=107.7807$ (7) ${ }^{\circ}$
$V=1390.47(3) \AA^{3}$
$Z=4$
$D_{x}=1.475 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 19230 reflections
$\theta=2.0-30.0^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Tablet, colourless
$0.30 \times 0.28 \times 0.23 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans with κ offsets
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.877, T_{\text {max }}=0.943$
35568 measured reflections
4068 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.117$
$S=1.05$
4068 reflections
194 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left({ }^{\circ}\right)$.

C5-N1-N2	$112.39(11)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$106.72(12)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{N} 1$	$104.46(11)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$111.55(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 16-\mathrm{O} 16$	$-157.99(16)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 13-\mathrm{O} 13$	$-137.36(17)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O}^{\mathrm{O}}{ }^{\mathrm{i}}$	0.95	2.43	$3.336(2)$	160
C11-H11 O^{i}		0.95	2.35	$3.225(2)$

Symmetry code: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

The methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}$ $=0.98 \AA$ ㅇ) with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bonds. All remaining H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Version 1.07; Farrugia, 1997); software used to prepare material for publication: $S H E L X L 97$ and PLATON (Spek, 2002).

ST thanks the X-ray Crystallography Facility, Institute of Organic Chemistry, University of Zurich, Switzerland, for providing access to the facility during his visit.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Foces-Foces, C. \& Trofimenko, S. (2001). Acta Cryst. E57, o32-o34.
Hiremath, V. S., Yelamagged, C. V. \& Badami, B. V. (1995). Indian J. Heterocycl. Chem. 5, 19-22.
Lapasset, P. J. \& Falgueirettes, J. (1972). Acta Cryst. B28, 791-796.
Liu, Y., Chen, W.-Q. \& Jin, G.-Y. (1998). Chem. J. Chin. Univ. 19, 192-193.
Morimoto, K., Sato, T. \& Yamamoto, S. (1997). J. Heterocycl. Chem. 34, 537541.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276,
Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

