2-(4-Chlorophenyl)-4-(2-hydroxyethyl)-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one

S. Thamotharan, V. Parthasarathi, Vinay Sunagar, Bharati Badami and Anthony Linden

[^0]Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Thamotharan, ${ }^{\text {a }} \mathrm{V}$.

Parthasarathi, ${ }^{\text {a }}$, Vinay Sunagar, ${ }^{\text {b }}$
Bharati Badami ${ }^{\text {b }}$ and Anthony Linden ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ PostGraduate Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India, and 'Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057
Zürich, Switzerland
Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
ωR factor $=0.122$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Chlorophenyl)-4-(2-hydroxyethyl)-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}$, the dihedral angle between the phenyl and triazole rings is $30.63(9)^{\circ}$. An intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is formed between the hydroxy group and the carbonyl group of the triazole moiety of a neighbouring molecule. This interaction links the molecules into chains, which run parallel to the c axis. $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds are also observed.

Comment

Extensive studies have been carried out on substituted 1,2,4triazole derivatives (Cornelissen et al., 1992; Kunkeler et al., 1996; Chinnakali et al., 1999; Fun et al., 1999; Kumaran et al., 1999). Research findings indicate that the 1,2,4-triazole moiety is associated with diverse pharmacological activities, such as analgesic, anti-asthmatic, diuretic, antifungal, antibacterial, pesticidal and anti-inflammatory activities (Bennur et al., 1976; Heubach et al., 1980; Sharma \& Babel, 1982; Mohamed et al., 1993). In view of this, the crystal structure determination of the title compound, (I), has been carried out in order to elucidate the stereochemistry and the molecular conformation.

(I)

The bond lengths and angles in (I) are comparable with those reported for related structures (Chen et al., 1998; Wang et al., 1998). Unweighted least-squares planes calculations show that the phenyl group is oriented at an angle of $30.63(9)^{\circ}$ with respect to the plane of the triazole ring. The hydroxyethyl group projects roughly perpendicular to the triazole ring $\left[\mathrm{C} 3-\mathrm{N} 4-\mathrm{C} 12-\mathrm{C} 13=80.7(2)^{\circ}\right]$. The exocyclic angle $\mathrm{N} 2-$ $\mathrm{C} 3-\mathrm{O} 3\left[128.58(17)^{\circ}\right]$ is significantly larger than the normal value of 120°, and this may be due to the short contact between atoms H 11 of the phenyl ring and O3 ($2.54 \AA$). The hydroxy group forms an intermolecular hydrogen bond with the carbonyl O atom of an adjacent molecule. This interaction links the molecules into chains, which run parallel to the c axis and have a graph-set motif of $C(7)$ (Bernstein et al., 1995). Several $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds are also observed in (I) (Table 2).

Experimental

The title compound was prepared by heating 3-(4-chlorophenyl)-5-methyl-2-oxo- $\Delta^{4}-1,3,4$-oxadiazole with ethanolamine. The solid obtained, (I), was crystallized from ethanol (m.p. 388-403 K).

Received 15 November 2002 Accepted 13 December 2002 Online 19 December 2002

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}_{2}$
$M_{r}=253.69$
Monoclinic, $P 2_{1} / c$
$a=12.6968$ (4) А
$b=11.1886$ (3) \AA
$c=7.9872(2) \AA$
$\beta=95.446(1)^{\circ}$
$V=1129.54(5) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans with κ offsets
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.895, T_{\text {max }}=0.970$
23311 measured reflections
2597 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.122$
$S=1.06$
2597 reflections
159 parameters
$D_{x}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 13330 reflections
$\theta=2.0-27.5^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=160$ (2) K
Tablet, pale yellow
$0.28 \times 0.20 \times 0.10 \mathrm{~mm}$

1777 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.081$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-14 \rightarrow 14$
$l=-10 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0683 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}_{\AA^{-3}}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

N1-C5	$1.296(2)$	N4-C5	$1.377(2)$
N1-N2	$1.401(2)$	$\mathrm{N} 4-\mathrm{C} 3$	$1.383(2)$
N2-C3	$1.370(2)$		
C5-N1-N2	$104.30(15)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 4$	$103.37(16)$
C3-N2-N1	$112.02(15)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 15$	$124.96(17)$
C5-N4-C3	$108.20(16)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 14-\mathrm{H} 14 \cdots \mathrm{O} 3^{\text {i }}$	0.86 (3)	1.91 (3)	2.7498 (19)	163 (3)
C12-H122 . ${ }^{\text {O }} 14^{\text {ii }}$	0.99	2.57	3.528 (2)	163
$\mathrm{C} 12-\mathrm{H} 121 \cdots \mathrm{O} 14^{\text {iii }}$	0.99	2.59	3.564 (2)	170
C15-H153 ${ }^{\text {O O }} 14^{\text {i }}$	0.98	2.49	3.463 (2)	174

Symmetry codes: (i) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (ii) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (iii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$.

The position of the hydroxy H atom was determined from a difference Fourier map and refined freely along with its isotropic displacement parameter. The methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}=0.98 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the parent $\mathrm{C}-\mathrm{C}$ bond. All remaining H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.95-0.99 \AA$) and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction:

Figure 1

View of the asymmetric unit of the title compound, showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

DENZO-SMN and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Version 1.07; Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

ST thanks the X-ray Crystallography Facility, Institute of Organic Chemistry, University of Zürich, Switzerland, for providing access to the facility during his visit.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bennur, S. C., Jigajinni, V. B. \& Badiger, V. V. (1976). Rev. Roum. Chim. 21, 757-762; Chem. Abstr. 85, 94306j.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Chen, W., Wang, Z. X., Jian, F. F., Bai, Z. P. \& You, X. Z. (1998). Acta Cryst. C54, 851-852.
Chinnakali, K., Fun, H.-K., Senthilvelan, A., Sriraghavan, K. \& Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1136-1138.
Cornelissen, J. P., van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. \& Reedijk, J. (1992). Inorg. Chem. 31, 198-202.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fun, H.-K., Chinnakali, K., Shao, S., Zhu, D. You, X. Z. (1999). Acta Cryst. C55, 770-772.
Heubach, G., Sachse, B. \& Buerstell, H. (1980). US Patent No. 4239 525; Chem. Abstr. 92, 181200h.
Kumaran, D., Ponnuswamy, M. N., Jayanthi, G., Ramakrishnan, V. T., Chinnakali, K. \& Fun, H.-K. (1999). Acta Cryst. C55, 581-582.
Kunkeler, P. J., van Koningsbruggen, P. J., Cornelissen, J. P., van der Horst, A. N., van der Kraan, A. M., Spek, A. L., Haasnoot, J. G. \& Reedijk, J. (1996). J. Am. Chem. Soc. 118, 2190-2197.
Mohamed, E. A., El-Deen, I. M., Ismail, M. M. \& Mohamed, S. M. (1993). Indian J. Chem. Sect. B, 32, 933-937.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sharma, R. S. \& Babel, S. C. (1982). J. Indian Chem. Soc. 59, 877-880.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands.
Wang, Z. X., Bai, Z. P., Yang, J. X., Okamoto, K. I. \& You, X. Z. (1998). Acta
Cryst. C54, 438-439.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

