Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Editors: W. Clegg and D. G. Watson

2-Methoxybenzohydroxamic acid: supramolecular aggregation through two-dimensional networks of $\mathrm{N}-\mathrm{H} \ldots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$ interactions Nagarajan Vembu, Anthony Linden, Jean Lee, John G. Kelly, Kevin B. Nolan and Marc Devocelle

[^0]Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Nagarajan Vembu, ${ }^{\text {a* }}$ Anthony
Linden, ${ }^{\text {b }}$ Jean Lee, ${ }^{\text {c John G. }}$ Kelly, ${ }^{\text {d }}$ Kevin B. Nolan ${ }^{\text {c }}$ and Marc Devocelle ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Urumu
Dhanalakshmi College, Tiruchirappalli 620019 , India, ${ }^{\mathbf{b}}$ Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057
Zürich, Switzerland, ' ${ }^{\text {c }}$ Centre for Synthesis and Chemical Biology, Department of
Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland, and ${ }^{\mathbf{d}}$ School of Pharmacy, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland

Correspondence e-mail: vembu57@yahoo.com

Key indicators

Single-crystal X-ray study
$T=160 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.060$
$w R$ factor $=0.156$
Data-to-parameter ratio $=10.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^1]
2-Methoxybenzohydroxamic acid: supramolecular aggregation through two-dimensional networks of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions

For the two molecules in the asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$, the dihedral angles between the mean planes of the benzene ring and the hydroxamic acid group are 4.50 (16) and $10.10(11)^{\circ}$. The supramolecular aggregation is effected by the formation of two-dimensional networks of N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions in addition to $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ interactions.

Comment

Hydroxamic acids are important iron chelators and microbial siderophores. They are associated with diverse biological activities including antibacterial, antifungal and antitumour profiles. Hydroxamate-based compounds are effective urease, ribonucleotide reductase or angiotensin converting enzyme (ACE) inhibitors. Some hydroxamic acids are currently accepted as antineoplastic, anti-inflammatory, analgesic, α adrenergic agonist and antidepressant drugs (Barbaric et al., 2005). Hydroxamic acids are nitric oxide donors and acetylated hydroxamate derivatives act as effective aspirin analogues by prostaglandin H_{2} synthase inhibition (Devocelle et al., 2003). The present investigation is aimed at the study of the molecular and supramolecular architecture of the title compound, (I). This study may serve as a forerunner to the study of the correlation between the molecular and supramolecular features of these compounds and their biological activities.

There are two independent molecules in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes through atoms O9/C7/N8/O10 and atoms C1-C6 in molecule A, and through atoms $\mathrm{O} 21 / \mathrm{C} 19 / \mathrm{N} 20 / \mathrm{O} 22$ and atoms $\mathrm{C} 13-\mathrm{C} 18$ in molecule B, are $4.50(16)$ and $10.10(11)^{\circ}$, respectively. This near-coplanarity contrasts with the non-coplanar orientation observed for similar groups in 2-amino-5-iodobenzohydroxamic acid [corresponding dihedral angle of 39.1 (1) ; Vembu et al., 2006], 2,4-dichlorobenzohydroxamic acid [49.3 (2) ${ }^{\circ}$; Shang et al., 2005] and o-methoxy- N-phenylbenzohydroxamic acid [63.75 (7) ${ }^{\circ}$; Saad et al., 2003].

Received 22 September 2006
Accepted 9 October 2006

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids.

Figure 2
A view of the unit-cell contents of (I), showing the two-dimensional chains and cooperative hydrogen-bonded network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdot \mathrm{O}$ interactions (dashed lines).

The crystal structure of (I) is stabilized by the interplay of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\pi-\pi$ interactions (Table 1). The NH groups are involved in bifurcated hydrogen bonds. The $\mathrm{N} 8-\mathrm{H} 8 \cdots \mathrm{O} 11$ and $\mathrm{N} 20-\mathrm{H} 20 \cdots \mathrm{O} 23$ intramolecular interactions each generate loops with a graph-set motif (Bernstein et al., 1995; Etter, 1990) of $S(6)$. The N8H8 $\cdots \mathrm{O} 21^{\mathrm{i}}$ interaction (see Table 1 for symmetry codes) links two independent molecules (A and B), whereas the $\mathrm{N} 20-$
$\mathrm{H} 20 \cdots \mathrm{O} 22^{\text {iii }}$ interaction links pairs of B molecules into dimers. The $\mathrm{C} 24-\mathrm{H} 24 A \cdots \mathrm{O} 10^{\text {vi }}$ interaction also links a molecule B to a molecule A, but there is no corresponding link in the reverse direction. The $\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 21^{\mathrm{ii}}$ and $\mathrm{O} 22-$ $\mathrm{H} 22 \cdots \mathrm{O} 9^{\text {iv }}$ interactions combine to give dimers involving the two independent molecules which can be described by a binary motif of $R_{2}^{2}(10)$. The combination of all intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions forms an extended two-dimensional network which lies parallel to the (100) plane (Fig. 2). The supramolecular aggregation is completed by the presence of a $\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 9^{\text {v }}$ interaction (Table 1). The symmetry-related ($2-x, 2-y,-z$) benzene rings of $B(\mathrm{C} 13-$ C18) stack together via a $\pi-\pi$ interaction in which the centroids of the rings ($C g 2$) are separated by 3.762 (1) \AA.

Experimental

Compound (I) was prepared by a reported method (Devocelle et al., 2003). Single crystals suitable for X-ray diffraction were obtained from a methanol solution by slow evaporation.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{3}$
$M_{r}=167.16$
Monoclinic, $P 2_{1} / c$
$a=11.1348$ (4) A
$b=16.7669$ (6) \AA
$c=8.8110$ (3) \AA
$\beta=106.761$ (2) ${ }^{\circ}$
$V=1575.09(10) \AA^{3}$

Data collection

Nonius KappaCCD area-detector diffractometer
ω scans
Absorption correction: none
22727 measured reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.156$
$S=1.17$
3092 reflections
290 parameters
All H -atom parameters refined
$Z=8$
$D_{x}=1.410 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=160$ (1) K
Prism, orange
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0749 P)^{2}\right. \\
& +0.4768 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.31 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.116 \text { (9) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N8-H8 . . O 11	0.88 (3)	2.00 (3)	2.609 (2)	125 (2)
$\mathrm{N} 8-\mathrm{H} 8 \cdots \mathrm{O} 21^{\text {i }}$	0.88 (3)	2.41 (3)	3.102 (2)	135 (2)
$\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 21^{\text {ii }}$	0.95 (3)	1.88 (3)	2.798 (2)	162 (3)
$\mathrm{N} 20-\mathrm{H} 20 \cdots \mathrm{O} 22^{\text {iii }}$	1.05 (3)	2.12 (3)	2.951 (2)	134 (2)
$\mathrm{N} 20-\mathrm{H} 20 \cdots \mathrm{O} 23$	1.05 (3)	1.80 (3)	2.588 (2)	129 (2)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 9^{\text {iv }}$	0.98 (4)	1.68 (4)	2.659 (2)	172 (3)
$\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O}^{\text {v }}$	1.00 (3)	2.32 (3)	3.251 (3)	155 (2)
$\mathrm{C} 24-\mathrm{H} 24 A \cdots \mathrm{O} 10^{\text {vi }}$	0.99 (3)	2.27 (3)	3.123 (3)	145 (2)

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+2,-y+2,-z+1$; (iv) $-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;$ (v) $-x+1, y+\frac{1}{2},-z-\frac{1}{2}$; (vi) $x+1, y, z$.

One low-angle reflection was omitted from the final cycles of refinement because its observed intensity was much lower than the calculated value as a result of being partially obscured by the beam stop. All H atoms were located in difference maps and their positions and isotropic displacement parameters were refined freely. The $\mathrm{C}-$ $\mathrm{H}, \mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bond lengths are 0.87 (3)-1.05 (3) $\AA, 0.88$ (3) and 1.05 (3) \AA, and 0.95 (3) and 0.98 (4) \AA, respectively.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

JL, JGK, KBN and MD thank the Irish Government under its 'Programme for Research in Third Level Institutions' and the Research Committee of the Royal College of Surgeons in Ireland for financial support.

References

Barbaric, M., Ursic, S., Pilepic, V., Zorc, B., Hegold-Brundic, A., Nagl, A., Grdisa, M., Pavelic, K., Snoeck, R., Andrei, G., Balzarini, J., Clerq, E. D. \& Mintas, M. (2005). J. Med. Chem. 48, 884-887.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Devocelle, M., Mc Loughlin, B. M., Sharkey, C. T., Fitzgerald, D. J. \& Nolan, K. B. (2003). Org. Biomol. Chem. 1, 850-853.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. London: Academic Press.
Saad, E. E., Farina, Y. \& Yamin, B. M. (2003). Acta Cryst. E59, o1004o1005.
Shang, X.-M., Meng, X.-G., Wu, J.-Z. \& Li, Q.-S. (2005). Acta Cryst. E61, o2328-o2329.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Vembu, N., Linden, A., Lee, J., Kelly, J. G., Nolan, K. B. \& Devocelle, M. (2006). Acta Cryst. E62. Submitted.

[^0]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

[^1]: C) 2006 International Union of Crystallography All rights reserved

