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1. On the γ-phase

The γ-phase forms an ordered layer structure in  P 21/n,  Z = 4, with one molecule per asymmetric 

unit.  The  monoclinic  lattice  parameters  at  room  temperature  are  a = 10.8222(3) Å, 

b = 24.1690(15) Å, c = 8.3623(5) Å, α = γ = 90°, β = 100.576(3)°, V = 2150.1(2) Å3. The layers are 

parallel to (3 0 1). If the unit cell is transformed with  a' = a + 3 c,  b' = b,  c' = c, the (0 0 1) plane 

becomes parallel to the layers and the space group changes to  P 21/a,  Z = 4, with  a = 25.4328 Å, 

b = 24.1690 Å, c = 8.3623 Å, α = γ = 90°, β = 24.727°, V = 2150.1 Å3. The layers are not planar, but 

wavy, as shown in Fig. S1c and Fig. S1d.

a) 
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b) 

c) 
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d) 

Figure S1: Crystal structures of P.R. 170: 

a) α-phase, view direction [1 0 0]; b) α-phase, view direction [0 0 1];

c) γ-phase after cell transformation, view direction [1 0 0];

d) γ-phase after cell transformation, view direction down c*. 

In the α-phase the CONH2 groups form helices around twofold screw axes, in the γ-phase the 

CONH2 groups form dimers via inversion centres (denoted by circles).

1.1. On order and disorder in the α- and the γ-phases of P.R.170

The α-phase (Schmidt et al., 2006) is not disordered because of the herringbone arrangement (see 

Fig. S1a, b); the hydrogen bonds between the layers fix the lateral positions of neighbouring layers 

and do not allow any ambiguity.

The γ-phase (Schmidt et al., 2006) possesses a layer structure similar to the β-phase. However, the 
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assembly of wavy layers would allow only a translational shift in the a direction, i.e. orthogonal to 

both the layer stacking direction and  that of  the waves, in the transformed γ-phase unit cell (see 

Fig. S1c, d). However, lattice-energy minimisations show that models with different shifts in the 

[1 0 0] direction either converge back to the structure of the γ-phase or result in strongly distorted 

layer geometries with very unfavourable energies.

2. Average structure models

a) 

 

b) 

Figure S2: Models of the average structure of the β-phase of P.R. 170. Direction of view: down 

[0 0 1]. a) major occupied positions in model 1; b) full and major occupied positions in model 2.

The red arrows denote the translation vectors between the layers (compare Fig. 7). 
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3. Details on the lattice-energy minimisations

3.1. Atomic charges fitted from electrostatic potential

Atomic charges for Pigment Red 170 were tested on the known ordered phases with structures 

determined by Schmidt et al., 2007. Charges were calculated with the 6-311G** basis set  (McLean 

& Chandler, 1980). Two methods were used to fit atomic charges to the electrostatic potential: the 

Merz-Kollman method after Besler et al. (1990), and the CHelpG method after Breneman & Wiberg 

(1990),  both implemented  in Gaussian 03  (Frisch  et al.,  2004).  With  both  methods  the  atomic 

charges were constrained to reproduce the dipole moment of the molecule.

Surprisingly,  using  the CHelpG atomic charges resulted in heavily distorted molecule and layer 

geometries for the α-phase model with  a  disastrous r.m.s.d. value of  5.93 Å for atomic positions. 

For the energetically favourable structure of the γ-phase using the CHelpG atomic charges yields an 

acceptable r.m.s.d. value of 0.254 Å. In an equally surprising manner, lattice-energy minimisations 

with these atomic charges and the Dreiding force field also yielded a more favourable lattice energy 

for the α-phase than for the γ-phase, which directly contradicts the experimentally observed phase 

stabilities. In an additional calculation CHelpG atomic charges  were assigned to a basic ordered 

model of the β-phase, which underwent a lattice-energy minimisation. This calculation yielded a 

triclinic unit cell with a heavily distorted “saw-tooth” layer geometry. Neither the cell metrics nor 

the layer geometry correspond to any known solid-state phase of P.R. 170. These results prompted 

the dismissal of CHelpG atomic charges as infeasible for the task at hand.

Atomic charges calculated with the Merz-Kollman method after Besler et al., 1990, were used for 

all further calculations. These charges yield a vastly improved r.m.s.d. value of 1.07 Å for the α-

phase and a comparable r.m.s.d. value of 0.30 Å for the γ-phase and allow a good reproduction of 

the experimentally determined layer geometry and occupied positions in the β-phase.

3.2. Tailor-made force field parameters

The parameter (X – N_R – C_R – X), which describes the torsion around any nitrogen-carbon bond 

in  a  conjugated  system,  was  changed  from 25 to  30 kcal/mol.  New parameters  were  added to 

describe the planar hydrazone group between the aromatic rings. A torsion parameter (N_R – N_R – 

C_R – C_R), which describes the specific torsion around the hydrazone nitrogen-carbon bond, was 

set up at  35 kcal/mol.  An angle bend parameter (C_R – C_R – N_R) which describes the bond 

angles at the carbon atoms carrying the hydrazone group, was set up at 150 kcal mol-1 rad-2 with a 
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default angle of 120°.

The resulting parametrisation was tested on similar  hydrazone compounds with known ordered 

crystal structures.  Atomic charges were calculated for each molecule with the 6-311G** basis set 

using the Merz-Kollman method and constrained to the dipole moment of the molecule.

The  lattice-energy  minimisations  with  Merz-Kollman  atomic  charges  reproduced  the  molecular 

structures and crystal structures of these pigments with good accuracy, including intramolecular and 

intermolecular  hydrogen-bonds and molecular  orientations  relative to  the layer  planes.  R.m.s.d. 

values  of non-hydrogen atoms  were calculated after van de Streek & Neumann, 2010.  A detailed 

listing of the hydrazone compounds used is given in table S1.

Table S1: Hydrazone compounds and r.m.s.d. values.

Compound (CSD entry) Structure published by r.m.s.d. value / Å

ANACMO Kobelt et al., 1972 0.270

CABWAE Yatsenko et al., 2001 0.162

CICCUN Schmidt et al., 2007 0.249

CIPGMR10 Paulus, 1982 0.140

MNIPZN Whitaker, 1978 0.093

OLOCAT Chang et al., 2003 0.114

UJIGAW Das & Biswas, 2010 0.124

VEHXIP Gridunova et al., 1989 0.115

VEHXOV Gridunova et al., 1989 0.119

3.3. On the lattice-energy minimisations

Lattice-energies were also calculated for the known structures of the α- and the γ-phases. Phase 

transition experiments show that the α-phase is the least stable and the γ-phase is the most stable 

phase of P.R. 170, since the α-phase converts into the other two phases and the β-phase converts  

into the γ-phase under thermodynamic conditions.  The obtained  lattice-energies are in agreement 

with the experimental stabilities, with the α-phase having the highest and γ-phase the lowest lattice-

energy. The various models for the β-phase are in between the other phases.

In several large models  of P.R.170  a partial transition from the  β-phase  to the more favourable 

stackings similar to other models or similar to the γ-phase was observed regardless of fixed lattice 

parameters:  During  the  optimisation,  the  layers  shifted  along  the  [0 1 0] axis,  while  the  layer 
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geometry changed from planar (as in the β-phase) to wavy (as in the γ-phase). These models were 

disregarded from further analyses.

4. X-ray powder diffraction and electron microscopy

 

Figure S3. X-ray powder diffraction diagram of β-P.R.170 at 100K (λ = 1.5406 Å; 

Sample II from isobutanol treatment).

Exposure to X-ray radiation for 24 hours confirmed that no phase transition or sample damage 

occurs during the diffraction experiments. The powder pattern cannot be indexed directly, so an 

immediate structure solution is not possible. Nevertheless, we tried to solve the structure by crystal-

structure  prediction  performing  lattice-energy  minimisations  in  various  space  groups  with  free 

lattice parameters, using the programs FleXCryst and CRYSCA. For all low-energy structures X-

ray powder diagrams were simulated and compared with the experimental powder diagram. In the 

case  of  the  α-phase  this  method was  successful,  although the  powder  data  were  only partially 

indexed (a*, b*, γ* from indexing; c*, α*, β* unknown). However, none of the calculated structures 

gave a powder diagram which reproduced the experimental diagram of the β-phase. Nevertheless, 

Rietveld refinements of several calculated structures were tried, but none of them gave a reasonable 

fit to the experimental powder data.
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Several  derivatives  were  synthesised  with  the  hope of  finding  an  isostructural  compound with 

improved  crystallinity.  This  attempt  had  been  successful  for  the  α-phase  (by  using  a  methyl 

derivative), but none of the synthesised derivatives was isostructural with the β-phase. Similarly, 

solid  solutions  were  tried  in  order  to  improve  the  crystallinity;  but  also  this  approach  was 

unsuccessful.

4.1. Comparison between X-ray single-crystal and powder diffraction data

A  powder  diagram  was  simulated  from  the  single-crystal  diffraction  data  recorded  by 

Warshamanage  et al. (2013) by spherically  integrating the full  diffraction pattern,  including the 

diffuse scattering,  without any prior extraction of individual reflection intensities.  The resulting 

powder  diffraction  pattern  is  in  fairly  good  agreement  with  the  experimental  powder  pattern 

(Fig. S4a, d).

On the other hand, powder patterns were simulated from the average structure models  1 and  2. 

Good  agreement  of  these  simulated  powder  diffraction  patterns  with  the  experimental  powder 

diffraction pattern (Fig. S4b, c, d) shows that the structure of the single crystal corresponds well 

with the crystal structure of the powder sample.

The simulated powder diagrams of models 1 and 2 differ mainly in the intensity of the reflection at 

2θ = 13°, which is the 2 0 0 reflection.

Additionally, we constructed a model with 100 layers assuming a purely random sequence of layers. 

The simulated powder diagram is shown in Fig. S4e; however, additional reflections appear in the 

diffraction  pattern  (indicated  by  arrows).  This  again  proves  that  the  layer  stacking  deviates 

significantly from just being random.

The  experimental  powder  diagram  (Fig. S4d)  shows  only  a  few  reliable  reflections.  This  low 

number explains why all attempts to index the X-ray powder diagram from scratch failed. In an 

unbiased indexing a monoclinic unit cell with a volume of more than 3500 Å3 and Z' = 2, as found 

by Warshamanage  et al. (2013), would be considered as highly speculative for a powder pattern 

containing only about 15 reflections. Furthermore, from this powder diagram a crystal structure 

with at least two independent molecules would have never been solved by any method. Also crystal-

structure  prediction  by  lattice-energy  minimisations  with  subsequent  simulation  of  the  powder 

patterns could not solve the structure, because we did not include structures with Z' = 2; and with 

Z' = 1 the correct structures could not have been found.
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Figure S4. X-ray powder diffraction patterns. All patterns recorded at 100 K. 

From top to bottom:

a) Pattern calculated by spherical integration of single-crystal diffraction data from sample III;

b) simulated pattern from model 2; 

c) simulated pattern from model 1; the 2 0 0 reflection is indicated by *; 

d) experimental powder pattern of sample II; 

e) simulated pattern of a model containing 100 layers with a fully random sequence; two reflections, 

absent in the experimental powder diffraction pattern, are indicated by arrows.

4.2. Electron microscopy

Typically, directions associated with large lattice vectors or disorder are least developed directions 

in crystal  morphology. Thus these directions tend to arrange along the electron beam when the 

crystals are placed onto the carbon film. On the other hand, the direction corresponding with the 

stacking of molecular layers is typically one of the longest crystal dimensions – for instance, the 

needle axis. Therefore, for β-P.R.170 the diffuse streaks do not run parallel to the electron beam, but 

are arranged more or less along the needle-axis of the crystals, and thus could be directly recorded 

in electron diffraction. 
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a)   b)  

c) 

Figure S5. a) STEM images of crystals of β-P.R.170 from sample I. 

b) TEM images of crystals of β-P.R.170 from sample I.

c) Projection of three-dimensional diffraction data reconstructed from ADT data. 

View orthogonal to the (0 0 1) plane. 

5. Layers, layer stacking and stacking disorder

S10



ESI P.R.170 Teteruk Glinnemann Gorelik Linden Schmidt 2013

5.1. On the occupancies

The experimentally observed occupancies of molecular sites in model 1 are about 93% vs. 7%. In 

contrast the occupancies in model  2 are 100% vs. 65% vs. 35%. Do these values contradict each 

other? Let's make the following Gedankenexperiment:

Let's consider a structure which only contains the small zigzag (+ −) and the large zigzag (+ + − −) 

motifs. A 40-layer structure with a sequence '+ − + − + − + − + − + − + − + − + − + − + − + − + − + 

− + + − − + + − − + + − −' corresponds in model 1 to '99 99 99 99 99 99 99 99 99 99 99 99 99 99 

9199 9199 9199'. This sequence contains 93% layers of the „9“ type and 7% layers of the „1“ type,  

which is in exact agreement with the experimental occupancies. The same sequence is described in 

model  2 as '6f 3f 6f 3f 6f 3f 6f 3f 6f 3f 6f 3f 6f 3f 6f6f 6f6f 6f6f ' and contains 50% of fully  

occupied layers „f“; from the remaining layers  there  are 65% of type „6“ and 35% of type „3“, 

which is again in perfect agreement with experimentally observed occupancies of about 65% and 

about  35%.  A  real  crystal  obviously  contains  other  sequences  as  well;  however  this 

Gedankenexperiment illustrates  that  the  different  occupancies  in  models  1 and  2 are  not 

contradictory to each other. If the occupancies in model 1 are given as A vs. (1-A) and in disordered 

layers of model 2 as B vs. (1-B) then the occupancies are related by B = 2.5 – 2A.

5.2. Single molecule; single layer

The molecular geometry from the single-crystal structure analysis is well reproduced by the force-

field calculations. The force-field geometry of the molecule is in similarly good agreement with the 

ab initio calculations. This proves that the modifications made on the intramolecular parameters of 

the force-field were successful.

5.3. Additional stacking possibilities

Occupying only the minor (0.07) positions in model  1 would result in  the periodic sequence '11', 

which is less favourable than the sequence '99'  by 10.27 kJ/mol.  An incorporation of a '...11...'  

fragment into larger sequences does not change the situation: The sequence '991199' is worse than 

'991919' by 2.13 kJ/mol; this value is averaged over six shifts and corresponds for a single shift to 

an  energy  loss  of  12.78 kJ/mol  caused  by  the  '11'  transition.  Similarly  high  energy  losses  of 

10.78 kJ/mol are found for the '11' fragment in '99119999' against '91999199', and of 14.11 kJ/mol 
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for '9911' against '9191'. Consequently, all following discussions were restricted to structures with 

ty = ±0.421, i.e. to sequences with '+' and '−' shifts only.

If the layers were planar, there would be two additional MDO structures. Repeated application of 

the screw axis parallel to  a* results in '+ q + q' (or '− p − p'); repeated application of the diagonal 

glide plane perpendicular to  c would result  in the sequence '+ p + p'  (or '− q − q').  These MDO 

structures are energetically unfavourable, see section 3.3.2 of the main paper.

5.4. Influence of neighbouring layers

Within  the  layers  the  molecules  are  held  together  by  van  der  Waals  interactions,  Coulomb 

interactions  and hydrogen  bonds.  Hence  significant  in-plane  motions  or  rotations  of  individual 

molecules relative to neighbouring molecules are hardly possible. In contrast, the molecules may 

bend or tilt  out of the plane without significant energy loss, as observed in the calculation of a 

single-layer in the gas phase, as well as in the crystal structures of the α- and γ-phases consisting of 

non-planar layers. However, in all calculations of the β-phase, as well as in the X-ray experiments,  

the layers are almost planar. This is a packing effect, caused by the surrounding layers. 

The lattice-energy minimisations show that the actual geometry of the layers changes very slightly 

with  the  arrangement  of  neighbouring  and  next-neighbouring  layers.  The  geometry  of  a  layer 

surrounded by two equal layers (e.g. 999 pattern in the sequence '9991') deviates slightly from the 

geometry of a layer surrounded by two different layers (e.g. 199 pattern in the sequence '9199'). A 

superposition of the geometries of these layers is shown in Fig. S6.
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Figure S6. Influence of the neighbouring layers on the local structure. 

Red: geometry of a layer surrounded by two equal layers (999 pattern).

Black: geometry of a layer surrounded by two different layers (199 pattern). View along a*.

Hence the influence of the arrangement of the layers on the local structure of the layers themselves 

is relatively small.  In the single-crystal X-ray structure analysis, larger deviations of the atomic 

positions  in  different  layers  would  lead  to  split  atomic  positions  or  strongly  anisotropic 

displacement parameters (ADP) in the average structure. The fact, that the local structure is similar 

in all layers, explains the absence of such "strange" ADPs in the experimental X-ray structures.

5.5. Influence and interactions of next-neighbouring layers

There are two possible arrangements for next-neighbouring layers: 1) the third layer is above the 

first one (Δy = 0); 2) the third layer is shifted (Δy = ± 0.842). In all cases Δz is equal to  0.5. The 

interactions between the first and the third layer consist of  two parts: a) conveyed by the second 

layer; b) direct through-space Coulomb and van der Waals interactions. 

The direct through-space interactions were calculated after removal of the intervening second layer. 

If the third layer is above the first one, the energy is more favourable, the Coulomb energy by 0.6-

0.9 kJ/mol and the van der Waals energy by up to 0.15 kJ/mol; both values depend slightly on the 

layer geometries, which are affected by the individual stacking sequence.
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Apart  from this  energetic  effect,  the  next-neighbouring  layers  have  a  visible  influence  on  the 

geometry of the layer. For example, the geometry of a layer sandwiched by two equal layers ( 999 

pattern) depends on the next-neighbouring layers ( 99999 vs.  19991 ) as shown  in Fig. S7. The 

maximum observed deviation of the carbon atom positions is approx. 0.3 Å.

Figure S7. Influence of next-neighbouring layers on the local structure. 

Red: geometry of the third layer in the 99999 pattern.

Blue: geometry of the third layer in the 19991 pattern. View along a*.

5.6. Why is the crystal structure monoclinic?

If  all  possible  stacking sequences  are  constructed,  using  a  combinatorial  approach,  there  are  4 

possibilities for a two-layer sequence ('+ −', '− +', '+ +', '− −'), of which two pairs are symmetry-

equivalent  ('+ −'  and  '− +';  '+ +'  and  '− −').  For  a  4-layer  sequence  there  are  already  2 4 =  16 

possibilities, of which four are symmetry-independent; for 6-layer models eight of 64 are different 

(see Table 1). Those sequences which contain an equal number of '+' and '−' vectors, can be derived 

from both model 1 and model 2 while featuring new layer positions. Other sequences, with unequal 

numbers of '+' and '−' shifts, result in deviations from monoclinic metrics, and therefore cannot be 

described as an ordered variant of either model 1 or model 2. As apparent from the 4-layer and 6-

layer models in Table 2, the structures with equal numbers of '+' and '−' shifts (or, at least, an almost 
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equal number) have better energies.

Statistical analysis of the stacking sequences obviously shows that twinned sequences, e.g. '+ + +' 

and '− − −' have equal probabilities of occurring and equal probabilities of being followed by an 

appropriately twinned layer,  i.e.  the sequence '+ + + −'  is  as probable as '− − − +'; the sequence 

'+ + + +' is as probable as '− − − −'. Therefore, for a sufficiently large crystal domain, the overall 

numbers of '+' and '−' layer shifts are equal, yielding an overall monoclinic structure.

5.7. Local stacking probabilities

For the stacking sequences, an additive combination of energies is assumed, i.e. the energy of a 

given layer is defined by selected surrounding layers. Such distinctive finite-shift sequences are 

defined as patterns. For a given pattern length, the overall number of possible patterns is determined 

combinatorially.  The  number  of  symmetry-independent  patterns  is  limited  by  the  symmetry 

conditions. 

The energy of a model of any given sequence can then be described as the sum of such patterns'  

energies. This allows for a mathematical approach to determine separate pattern energies from their 

linear  combinations,  which  have  been  calculated  beforehand  as  model  energies.  Within  a 

combinatorially  complete  set  of models  the pattern energies,  the model  energies  and the linear 

combinations of patterns assigned to models form an over-defined system of linear equations. As 

such systems  do not  permit  exact  solutions,  a  least-squares  method is  used  to  obtain  the  best 

approximations for pattern energies. 

The Boltzmann distribution is applied to obtain probabilities for these patterns, yielding first the 

relative occupancy values Ni and then probabilities pi for each pattern. Probabilities calculated by 

this  method  describe  the  chances  to  find  certain  combinations  of  neighbouring  and  next-

neighbouring  layers  within  a  theoretical  infinite  disordered  crystal.  Thus  the  local  structure  is 

determined.

The resulting probabilities are given in Table S2.
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Table S2: Probabilities for local stacking motifs (pattern) containing 4 layers.

a) Derived from periodic 4-layer models

Pattern
Pattern energy 

kJ/mol

Degeneracy of 

pattern

Probability of 

pattern

+ + + -0.04 2 0.1380

+ + − = − + + -2.12 4 0.6405

− + − -1.21 2 0.2215

b) Derived from periodic 6-layer models

Pattern
Pattern energy 

kJ/mol

Degeneracy of 

pattern

Probability of 

pattern

+ + + -0.18 2 0.1527

+ + − = − + + -1.92 4 0.6161

− + − -1.21 2 0.2312

The  pattern  probabilities  from  different  combinatorially  complete  sets  of  models  are  in  good 

agreement. The accuracy of the determined probabilities increases with the number of models in the 

set, as larger systems of equations allow for better least-squares solutions.

A supercell model containing 100 layers was constructed to approximately represent the average 

structure model  1 by randomly placing  90% of  the layers  on the  major  occupied  position and 

placing the remaining 10% of the layers on the minor occupied position. This approach hence yields 

a 100 layer model with a random layer sequence.

On the other  hand, the  above stacking pattern probabilities  were used to  construct  a  100-layer 

structural model with regards to the local structure. Both 100-layer models yield 99 superstructure 

reflections between neighbouring Bragg reflections  parallel  to the  a* direction  in the simulated 

diffraction pattern. These superstructure reflections overlap and give a good representation of the 

diffuse streaks.
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