(±)-6-Benzyl-3,3-dimethylmorpholine-2,5-dione and its 5-monothio and 2,5-dithio derivatives

Anthony Linden,* Fatemeh Ghorbani-Salman Pour, Roland A. Breitenmoser and Heinz Heimgartner

Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Correspondence e-mail: alinden@oci.unizh.ch

Received 7 February 2001
Accepted 15 February 2001

The morpholine ring of the title dione, C_{13}H_{15}NO_{3}, shows a boat conformation that is distorted towards a twist-boat, with the boat ends being the two C\(^{sp3}\) atoms of the ring. The benzyl substituent is in the favoured ‘exo’ position. In the monothione derivative, (±)-6-benzyl-3,3-dimethyl-5-thioxo-morpholin-2-one, C_{13}H_{15}NO_{2}S, this ring has a much flatter conformation that is midway between a boat and an envelope, with the dimethyl end being almost planar. The orientation of the benzyl group is ‘endo’. The dithione derivative, (±)-6-benzyl-3,3-dimethylmorpholine-2,5-dithione, C_{13}H_{15}NOS_{2}, has two symmetry-independent molecules, which show different puckering of the morpholine ring. One molecule has a flattened envelope conformation distorted towards a screw-boat, while the conformation in the other molecule is similar to that in the monothione derivative. Intermolecular hydrogen bonds link the molecules in the three compounds, respectively, into centrosymmetric dimers, infinite chains, and dimers made up of one of each of the symmetry-independent molecules.

Comment

Some years ago, we showed that diamides akin to compound (III) (see Scheme), which are conveniently prepared by the reaction of hydroxy acids with 3-amino-2\(H\)-azirines, can be cyclized by treatment with HCl gas in a non-nucleophilic solvent (Obrecht & Heimgartner, 1984, 1987; Heimgartner, 1991a; Heimgartner et al., 1999). This method, the so-called ‘direct amide cyclization’, has been used widely to prepare cyclic depsipeptides by lactone formation (Obrecht & Heimgartner, 1984, 1990; Magirius, 1995; Koch & Heimgartner, 2000; Koch et al., 2000). In the case of larger rings, the cyclization occurs via 1,3-oxazol-5\(\(\(4H\)\)-ones as intermediates and ring enlargement by intramolecular nucleophilic attack of the hydroxy group at the oxazolone C\(\equiv\)O group (Heimgartner et al., 1999). On the other hand, a mechanism via an intermediate oxonium ion is more likely for the formation of the six-membered morpholine-2,5-diones.

In connection with our investigations of 1,3-dipolar cycloadditions with thiocarbonyl compounds (cf. Heimgartner, 1986, 1991b; Linden et al., 1999; Mloston & Heimgartner, 2000), we also became interested in the thio analogues of morpholinediones as C\(\equiv\)S dipolarophiles. The mono- and dithio analogues are attractive models for the study of the chemoselectivity (dipolarophilicity) of different π-systems in 1,3-dipolar cycloadditions. The racemic morpholine-2,5-dione (IV) was prepared following the described protocol of Obrecht & Heimgartner (1987). Subsequent successive thionation with Lawesson reagent (LR) led almost quantitatively to the monothione (V) and then to the morpholine-2,5-dithione (VI), although the latter reaction was sluggish with a low yield. As part of the full characterization of compounds (IV), (V), and (VI), their low-temperature crystal structures have been determined.

In each compound, the bond lengths and angles are generally within normal ranges. The amide C\(\equiv\)O and thioamide C\(\equiv\)S bonds in the dione, (IV), and the dithione, (VI), respectively, are longer than the corresponding ester C\(\equiv\)O and thioester C\(\equiv\)S bonds (Tables 1 and 3). This reflects the expected greater π-electron delocalization in (thio)amide groups compared with (thio)ester groups and is consistent with the trends for such groups derived from an examination of the Cambridge Structural Database (CSD, October 2000 release; Allen & Kennard, 1993). The angles at the O and N atoms of the morpholine rings (Tables 1, 3 and 5) are signifi...
The morpholine ring of the dione, (IV), has puckering parameters (Cremer & Pople, 1975) of $Q = 0.463 (2)$ Å, $\theta = 92.4 (2)^\circ$ and $\psi = 133.4 (2)^\circ$, which represent a conformation midway between a boat (nearest ideal values: $\theta = 90, \psi = 120^\circ$) and a twist-boat ($\theta = 90, \psi = 150^\circ$) (Boeyens, 1978), where the boat ends are the two Csp3 atoms of the ring (Fig. 1) and the twist results from a slight non-planarity of the four atoms constituting the base of the boat. The r.m.s. deviation of O1, C2, N4 and C5 from their mean plane is 0.053 Å, while C3 and C6 deviate from this plane by 0.363 (3) and 0.416 (3) Å, respectively. The benzyl substituent is in the favoured ‘exo’ position.

The morpholine ring of the monothione derivative, (V), has a much flatter and less twisted boat conformation (Fig. 2). The two Csp3 atoms of the ring again form the ends of the boat, but the dimethyl end is almost coplanar with the base of the boat, so that the ring is distorted towards an envelope conformation. This is borne out by the ring-puckering parameters of $Q = 0.139 (2)$ Å, $\theta = 75.2 (8)^\circ$ and $\psi = 298.3 (10)^\circ$. The value of ψ is appropriate for either an envelope or boat conformation (nearest ideal value is 300$^\circ$) (Boeyens, 1978), while θ lies approximately midway between the ideal values for boat (90$^\circ$) and envelope (54.7$^\circ$) conformations. The r.m.s. deviation of O1, C2, N4 and C5 from their mean plane is only 0.002 Å, while C3 and C6 deviate from this plane by 0.056 (3) and 0.108 (3) Å, respectively. The orientation of the benzyl group is ‘endo’, which brings the phenyl ring into a position above the body of the morpholine ring.

The asymmetric unit of the dithione derivative, (VI), has two symmetry-independent molecules (Fig. 3) and PLATON (Spek, 2001) confirmed that there was no additional overlooked symmetry, although the molecules are approximately related by a non-crystallographic two-fold axis. The two molecules have different puckering of the morpholine ring and the orientation of the phenyl ring about the C9–C10 bond (C29–C30 in molecule B) also differs by a twist of about 17$^\circ$. The morpholine ring of molecule A has puckering parameters of $Q = 0.185 (2)$ Å, $\theta = 62.8 (7)^\circ$ and $\psi = 75.2 (8)^\circ$, which represent a conformation midway between that of a slightly flattened envelope (nearest ideal values: $\theta = 54.7, \psi = 60^\circ$) and a screw-boat ($\theta = 67.5, \psi = 90^\circ$) (Boeyens, 1978). In contrast to compounds (IV) and (V), it is not an Csp3 atom that is out of the plane, but the thioester C atom, C2. The r.m.s. deviation of O1, C3, N4, C5 and C6 from their mean plane is 0.022 Å, while C2 deviates from this plane by 0.250 (3) Å. The phenyl ring is positioned above the morpholine ring.

The morpholine ring in molecule B of (VI) has a flattened boat conformation distorted towards an envelope, similar to, but even flatter than, the conformation observed in compound (V). The ring-puckering parameters are $Q = 0.097 (2)$ Å, $\theta = 101.6 (12)^\circ$ and $\psi = 120.5 (12)^\circ$. Using the inverted molecule, which is also present in this racemic compound, $\theta = 78.4 (12)^\circ$ and $\psi = 300.5 (12)^\circ$, which indicate a conformation similar to that observed for compound (V). As in (V), the two Csp3 atoms of the ring form the ends of the boat, with the dimethyl end being almost coplanar with the base of the boat. The r.m.s. deviation of O21, C22, N24 and C25 from their mean plane is only 0.0004 Å, while C23 and C26 deviate from this plane by 0.056 (3) and 0.108 (3) Å, respectively. The orientation of the benzyl group is ‘endo’, with the phenyl ring again being positioned above the morpholine ring.

There are only two structure reports cited in the CSD of compounds containing a morpholine-2,5-dione moiety, while there are no reports of any structures involving 5-thioxomorpholin-2-one or morpholine-2,5-dithione moieties. Both reported structures are simply substituted morpholine derivatives. The morpholine ring in 3-benzyl-6-isopropylmorpholine-2,5-dione was reported as having a boat conformation with the Csp3 atoms forming the boat ends (Bolte & Egert, 1994). However, a closer examination of the puckering parameters [$Q = 0.494 (2)$ Å, $\theta = 93.1 (2)^\circ$ and $\psi = 129.3 (2)^\circ$] shows that the ring has an unflattened conformation that lies midway between a boat and a twist-boat, and which is virtually identical to that in compound (IV). Conversely, in 3-benzyl-3-hydroxy-6-methylamino-6-(2-methylpropyl)morpholine-2,5-dione (Iijima et al., 1992), the
morpholine ring has an almost completely flattened boat conformation, with the two Csp³ atoms being only 0.086 and 0.078 Å from the plane defined by the other four ring atoms, which are all 0.002 Å from their mean plane.

While a comparison of the structures of compounds (IV), (V) and (VI) might induce one to conclude that an increasing number of thione substituents in the morpholine ring leads to a greater flattening of the ring, the two previously reported structures of morpholine-2,5-dione derivatives contradict this hypothesis and suggest that the cause of the ring flattening is not necessarily related to the degree of thione substitution, but to other effects which cannot readily be deduced from the small number of determined structures of this class.

The amide N—H group of compound (IV) forms an intermolecular hydrogen bond with the amide O atom of an adjacent molecule (Table 2). This acceptor molecule then donates back to the first molecule, thereby linking pairs of molecules into centrosymmetric dimers whose interactions can be described by the graph-set motif of \(R_2^2(8) \) (Bernstein et al., 1995). In the monothione derivative, (V), a simple change from the ester group of (IV) to a thioether group has dramatically altered the hydrogen-bonding pattern (Table 4). The acceptor atom is now the morpholine ring O atom of a neighbouring molecule and intermolecular interactions link the molecules of (V) into infinite one-dimensional chains which run parallel to the [010] direction and have a graph-set motif of \(C(5) \). In compound (VI), the hydrogen-bonding pattern is similar to that in compound (IV). The acceptor atom is the thioamide S atom of the other symmetry-independent molecule in the asymmetric unit. This acceptor molecule then donates back to the first molecule, thus forming hydrogen-bonded dimers comprised of one of each of the symmetry-independent molecules (Table 6 and Fig. 3). These interactions can again be described by the graph-set motif of \(R_2^2(8) \).

Experimental

Compound (III) was obtained in 92% yield by the reaction of 2-phenyllactic acid, (I) (408 mg, 2.46 mmol), and 2,2,2-trimethyl-N-phenyl-2H-azirin-3-amine, (II) (472 mg, 2.71 mmol), in acetonitrile (20 ml) at room temperature following a known protocol (Obrecht & Heimgartner, 1987). Treatment of a solution of (III) (2.19 g, 6.44 mmol) in toluene (300 ml) at 373 K with dry HCl gas for 15 min yielded, after chromatography (silica gel, dichloromethane/diethyl ether, 6:1) and crystallization from diethyl ether, compound (IV) in 96% yield as colourless needles (m.p. 448-449 K). Heating a mixture of (IV) (95 mg, 0.38 mmol) and Lawesson reagent (3.84 mg, 0.95 mmol) in toluene (10 ml) for 2 d under reflux led, after chromatographic separation (silica gel, dichloromethane/hexane, 1:1), to compound (VI) in 28% yield as yellow prisms (m.p. 396–397 K). Suitable single crystals of (VI) were obtained by recrystallization from diethyl ether/ dichloromethane/hexane.

Compound (IV)

Crystal data

\[
\begin{align*}
& \text{C}_3\text{H}_4\text{N}_2\text{O}_4, \\
& D_r = 1.281 \text{ Mg m}^{-3} \\
& \text{Mo } K\alpha \text{ radiation} \\
& \text{Cell parameters from 25 reflections} \\
& \theta = 19.0-20.5^\circ \\
& \mu = 0.09 \text{ mm}^{-1} \\
& T = 173 \text{ (1) K} \\
& \text{Plate, colourless} \\
& 0.50 \times 0.38 \times 0.12 \text{ mm}
\end{align*}
\]

Re-refinement

Refinement on \(F^2 \)

\[
\begin{align*}
& R(F^2) > 2\sigma(F^2) = 0.047 \\
& wR(F^2) = 0.130 \\
& S = 1.02
\end{align*}
\]

2773 reflections with \(I > 2\sigma(I) \)

160 parameters

H atoms: see below

Compound (V)

Crystal data

\[
\begin{align*}
& \text{C}_{13}\text{H}_{15}\text{NO}_3, \\
& Z = 2 \\
& D_r = 1.335 \text{ Mg m}^{-3} \\
& \text{Mo } K\alpha \text{ radiation} \\
& \text{Cell parameters from 24 reflections} \\
& \theta = 18.0\text{-}20.0^\circ \\
& \mu = 0.25 \text{ mm}^{-1} \\
& T = 173 \text{ (1) K} \\
& \text{Needle, colourless} \\
& 0.50 \times 0.20 \times 0.15 \text{ mm}
\end{align*}
\]

Data collection

Rigaku AFC-5R diffractometer

\(\omega \)–2\(\theta \) scans

2927 measured reflections

2773 independent reflections

1859 reflections with \(I > 2\sigma(I) \)

3 standard reflections

intensity decay: none

Table 1

Selected geometric parameters (Å, °) for (IV).

<table>
<thead>
<tr>
<th>(\text{D})–(\text{H})–(\text{A})</th>
<th>(\text{D})–(\text{H})</th>
<th>(\text{H})–(\text{A})</th>
<th>(\text{D})–(\text{A})</th>
<th>(\text{D})–(\text{H})–(\text{A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1–C2</td>
<td>1.340 (2)</td>
<td>O5–C5</td>
<td>1.236 (2)</td>
<td>0.88 (2)</td>
</tr>
<tr>
<td>O1–C6</td>
<td>1.457 (2)</td>
<td>N4–C5</td>
<td>1.323 (2)</td>
<td>0.15 (1)</td>
</tr>
<tr>
<td>O2–C2</td>
<td>1.199 (2)</td>
<td>N4–C3</td>
<td>1.460 (2)</td>
<td>1.20 (1)</td>
</tr>
<tr>
<td>C2–O1–C6</td>
<td>120.53 (13)</td>
<td>C5–N4–C3</td>
<td>124.06 (14)</td>
<td>0.88 (2)</td>
</tr>
</tbody>
</table>

Table 2

Hydrogen-bonding geometry (Å, °) for (IV).

<table>
<thead>
<tr>
<th>(\text{D})–(\text{H})–(\text{A})</th>
<th>(\text{D})–(\text{H})</th>
<th>(\text{H})–(\text{A})</th>
<th>(\text{D})–(\text{A})</th>
<th>(\text{D})–(\text{H})–(\text{A})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4–H4–NO(_2^\dagger)</td>
<td>0.88 (2)</td>
<td>1.95 (2)</td>
<td>2.833 (2)</td>
<td>176 (2)</td>
</tr>
</tbody>
</table>
organic compounds

Refinement

Refinement on \(F^2 \)

\(R[F^2 > 2\sigma(F^2)] = 0.052 \)

\(wR(F^2) = 0.151 \)

\(S = 1.04 \)

2854 reflections

160 parameters

Table 3

Selected geometric parameters (\(\AA, ^\circ \)) for (V).

<table>
<thead>
<tr>
<th>Symmetry code</th>
<th>(\Delta P_{\text{max}})</th>
<th>(\Delta P_{\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>S5—C5</td>
<td>1.669 (2)</td>
<td>2.104 (3)</td>
</tr>
<tr>
<td>O1—C2</td>
<td>1.347 (3)</td>
<td>1.470 (3)</td>
</tr>
<tr>
<td>O1—C6</td>
<td>1.455 (3)</td>
<td>1.315 (3)</td>
</tr>
<tr>
<td>C2—O1—C6</td>
<td>124.30 (19)</td>
<td>128.6 (2)</td>
</tr>
</tbody>
</table>

\(\Delta P_{\text{max}} = 0.53 \, \text{e} \, \text{Å}^{-3} \)

\(\Delta P_{\text{min}} = -0.36 \, \text{e} \, \text{Å}^{-3} \)

Table 4

Hydrogen-bonding geometry (\(\AA, ^\circ \)) for (V).

<table>
<thead>
<tr>
<th>(D-H-A)</th>
<th>(D-H)</th>
<th>(H \cdots A)</th>
<th>(D \cdots A)</th>
<th>(D-H-A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4—H4—O1'</td>
<td>0.90 (3)</td>
<td>2.22 (3)</td>
<td>3.092 (4)</td>
<td>164 (2)</td>
</tr>
</tbody>
</table>

\(\Delta P_{\text{max}} = 0.54 \, \text{e} \, \text{Å}^{-3} \)

\(\Delta P_{\text{min}} = -0.41 \, \text{e} \, \text{Å}^{-3} \)

Symmetry code: (i) x, y, z.

Compound (VI)

Crystal data

\(\text{C}_{13}\text{H}_{15}\text{NO}_3\text{S} \)

\(M_r = 265.39 \)

Triclinic, \(\text{PT} \)

\(a = 8.6915 (13) \, \text{Å} \)

\(b = 11.896 (3) \, \text{Å} \)

\(c = 13.661 (4) \, \text{Å} \)

\(\alpha = 75.62 (2) \, ^\circ \)

\(\beta = 76.211 (16) \, ^\circ \)

\(\gamma = 84.971 (18) \, ^\circ \)

\(V = 1328.2 (6) \, \text{Å}^3 \)

Data collection

Rigaku AFC-5 diffractometer

\(\omega/2\theta \) scans

Absorption correction: \(\psi \) scan

\(R_{\text{min}} = 0.021 \)

\(\theta_{\text{max}} = 27.5 \, ^\circ \)

\(h = -11 \rightarrow 11 \)

\(k = -15 \rightarrow 0 \)

\(l = -17 \rightarrow 17 \)

6999 measured reflections

3 standard reflections

6101 independent reflections

4424 reflections with \(I > 2\sigma(I) \)

Refinement

Refinement on \(F^2 \)

\(R[F^2 > 2\sigma(F^2)] = 0.049 \)

\(wR(F^2) = 0.142 \)

\(S = 1.05 \)

6101 reflections

319 parameters

H atoms: see below

For each compound, the methyl H atoms were constrained to an ideal geometry with \(U_{\text{iso}}(H) = 1.5 U_{\text{eq}}(C) \). The amino H atoms were refined freely. All other H atoms were constrained to ride on their parent atoms with \(U_{\text{iso}}(H) = 1.2 U_{\text{eq}}(C) \). For (V), the \(\psi \) scans showed a more severe absorption profile than predicted theoretically and this is attributed to the anisotropic shape of the crystal.

For all compounds, data collection and cell refinement: MSCI AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); data reduction: TEXSAN (Molecular Structure Corporation, 1999); structure solution: SHELX97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976).

The Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, are thanked for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1460). Services for accessing these data are described at the back of the journal.

References

