A second polymorph of 1,1,4,4-tetramethylpiperazinium pentabromothallate(III)

Anthony Linden, Alexander Petridis and Bruce D. James
A second polymorph of 1,1,4,4-tetramethylpipеразinium pentabromothallate(III)

Anthony Linden, Alexander Petidis and Bruce D. James

A new polymorph of the title compound, (C₈H₂₀N₂)[TlBr₅], contains cations located about crystallographically centres of inversion and trigonal-bipyramidal anions which have a C₂ axis passing through the equatorial plane of the anion. The anion has the least distorted geometry seen so far in any structure possessing this anion and the axial Tl–Br bonds are about 0.13 Å longer than the equatorial Tl–Br bonds, consistent with related structures. The anion in the initially reported polymorph has lower symmetry and a greater distortion of the trigonal-bipyramidal coordination.

Comment

The pentacoordinate [TlBr₅]²⁻ anion was characterized only recently as an almost regular trigonal-bipyramidal species in its complex with a quaternized N,N-diethyl-triethylenediammonium salts (Linden, Nugent et al. 1999). In both cases, the Brₐx–Tl–Brₐx angles (ax is axial) were equal in length and the coordination geometry of the anion forms quite a regular trigonal bipyramid, although the symmetry does not constrain it to be a perfect one. Indeed, the axial Tl–Br bonds are slightly distorted from linear geometry by 2.968 (17)° (Table 1) and are also about 0.13 Å longer than the equatorial Tl–Br bonds.

The structures of just four other compounds containing almost regular trigonal-bipyramidal [TlBr₅]²⁻ anions are reported in the literature (Linden, Nugent et al., 1999; Reid et al., 1999; Linden et al., 2002), although other much more highly distorted [TlBr₅]²⁻ species are known (Linden, James et al., 1999; Linden et al., 2002). Of these four compounds, two possess [TlBr₅]²⁻ anions with crystallographic symmetry, namely C₂ symmetry in the N,N'-diethyl-N,N',N'-tetramethyl-1,2-ethylenediammonium salt (etmeen; Linden et al., 2002) and C₂ᵥ symmetry in the [Mn(15-crown-5)(H₂O)₂]²⁺ salt as a different form, (lb), to that found in the original structure determination (Ia; Linden, Nugent et al., 1999). It is unknown whether both forms existed simultaneously in the original batch at the time of crystallization, or if this second form evolved from the former structure during the three years that the original crystals were stored.

The original structure determination for the title compound found that the space group was P2₁/c with two symmetry-independent 1,1,4,4-tetramethylpipеразinium cations sitting across centres of inversion and one unique [TlBr₅]²⁻ anion in a general position. In contrast, polymorph (lb) crystallizes in space group C2/c with one unique cation possessing crystallographic C₂ᵥ symmetry and one unique anion with crystallographic C₂ symmetry (Fig. 1). Although the unit-cell volumes of the two polymorphs are quite similar, as are the lengths of the b axes and the β angles, the lengths of the a and c axes show significant differences and no transformation matrix can be found which will interconvert the two unit cells, thus excluding the possibility that the lower symmetry polymorph was simply defined in the wrong space group.

The twofold axis through the [TlBr₅]²⁻ anion of (lb) passes through the equatorial plane of the anion, one of the equatorial Br atoms and the Tl atom. As a result, both axial Tl–Br bonds are equal in length and the coordination geometry of the anion forms quite a regular trigonal bipyramid, although the symmetry does not constrain it to be a perfect one. Indeed, the axial Tl–Br bonds are slightly distorted from linear geometry by 2.968 (17)° (Table 1) and are also about 0.13 Å longer than the equatorial Tl–Br bonds.

The structure of (lb) drawn with 50% probability displacement ellipsoids and showing the atom-numbering scheme. H atoms are represented by circles of arbitrary size. [Symmetry codes: (i) 2 − x, y, 1/2 − z; (ii) 1/2 − x, 1/2 + y, 1 − z.]
metal-organic compounds

[\textit{Mn}(\text{crown}); \textit{Reid} \textit{et al.}, 1999]. The geometric parameters for some of these anions are included in Table 1 and show that the anion in (Ib) has the least distorted trigonal-bipyramidal geometry of the three structures. The \textit{Br}_{ax}–\textit{Tl}–\textit{Br}_{ax} bonds in the anion of the etmeen salt show the greatest deviation from linearity [7.25 (6)°], although these distortions are still quite small. While the \textit{Tl}–\textit{Br} bond lengths in this latter salt are very similar to those of (Ib), the axial \textit{Tl}–\textit{Br} bonds in the \textit{Mn}(\text{crown}) salt are significantly longer than in (Ib) and the equatorial bonds are correspondingly shorter, the difference between the axial and equatorial bond lengths now being about 0.34 \AA.

The two reported structures in which the [\textit{TlBr}_{5}]^{2−} anions do not possess any crystallographic symmetry are those of the first polymorph of the title compound, (Ia), and the \textit{N,N′}-diethyltriethylenediammonium salt (Linden, Nugent \textit{et al.}, 1999). The \textit{Br}_{ax}–\textit{Tl}–\textit{Br}_{ax} angles are distorted from linearity by 2.67 (4)° in (Ia), and by 10.3 (2)° and 6.3 (2)° for the two symmetry-independent anions in the latter structure. Thus, the distortions from linearity are similar to those observed in (Ib) and the other structures in which the anions have crystallographic symmetry. The lengths of the equatorial \textit{Tl}–\textit{Br} bonds of these two compounds, being about 2.59 \AA, are also similar to those of (Ib) and are shorter than the axial \textit{Tl}–\textit{Br} bonds, as expected. However, in contrast to (Ib) and the other symmetrical anions, the lengths of the axial \textit{Tl}–\textit{Br} bonds in these two compounds show distinct asymmetry. In (Ia), these distances are 2.840 (1) and 2.737 (1) \AA, for the \textit{N,N′}-diethyltriethylenediammonium salt, they are 2.914 (4) and 2.706 (4) \AA, and 2.915 (5) and 2.725 (5) \AA for the two symmetry-independent anions, respectively. This asymmetry leads to a significant distortion of the trigonal bipyramid in that the \textit{Tl}–\textit{Br} bonds involving the equatorial \textit{Br} atoms are bent at the \textit{Tl} atom away from the closer of the two axial \textit{Br} atoms towards the more distant one, resulting in a deviation of some \textit{Br}_{ax}–\textit{Tl}–\textit{Br}_{eq} angles by up to 10° from the ideal value of 90° and a deviation of the \textit{Tl} atom from the equatorial plane of \textit{Br} atoms by 0.10 and 0.18 \AA (Linden, Nugent \textit{et al.}, 1999). Such asymmetry and distortions of the trigonal bipyramid are not observed in the structure of (Ib) and the \textit{Tl} atom lies on the equatorial plane.

The crystal packing consists of alternating layers of cations and anions stacked parallel to the (100) plane.

Experimental

The title compound was prepared as described previously (Linden, Nugent \textit{et al.}, 1999) and crystallized by slow evaporation of its solution in concentrated \textit{HBr} (m.p. 494–497 K).

Crystal data

\begin{align*}
\text{C}_{30}\text{H}_{40}\text{N}_{2}\text{[TlBr}_{5}] &\quad D_1 = 2.766 \text{Mg m}^{-3} \\
M_\text{r} &\quad \text{Mo} K\alpha \text{ radiation} \\
\text{Monoclinic, } C2/c &\quad \text{Cell parameters from 2872 reflections} \\
a &\quad 16.0822 (3) \text{Å} \\
b &\quad 9.2422 (2) \text{Å} \\
c &\quad 13.2718 (2) \text{Å} \\
\beta &\quad 114.3928 (8) \\
V &\quad 1796.56 (6) \text{Å}^3 \\
Z &\quad 4 \\
\end{align*}

Data collection

Nonius KappaCCD diffractometer \(\psi\) scans, and \(\omega\) scans with \(\kappa\) offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
\(T_{\text{min}} = 0.074, T_{\text{max}} = 0.105\)
18 998 measured reflections
2740 independent reflections

Refinement

Refinement on \(F^2\)
\(R(F^2) = 0.068\)
\(S = 1.06\)
2740 reflections
77 parameters

\begin{align*}
\text{H-atom parameters constrained} &\quad w = 1/[\sigma^2(F^2) + (0.0247P)^2 + 10.1152P] \\
\text{where } P = (F^2 + 2F_c^2)/3 \\
\Delta \rho_{\text{max}} &\quad = 2.22 \text{ e Å}^{-3} \\
\Delta \rho_{\text{min}} &\quad = -2.26 \text{ e Å}^{-3} \\
\text{Extinction correction: } SHELXL97 \\
\text{Extinction coefficient: } 0.00183 (8)
\end{align*}

Table 1

Comparison of selected geometric parameters (Å, °) for (Ib) with those of other [\textit{TlBr}_{5}]^{2−} salts containing symmetrical anions.

<table>
<thead>
<tr>
<th></th>
<th>(Ib)</th>
<th>\textit{Mn}(\text{crown}) salt(^{ab})</th>
<th>\textit{etmeen} salt(^{c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Tl}–\textit{Br} & 2.73 (5)</td>
<td>2.88 (3)</td>
<td>2.76 (2)</td>
<td></td>
</tr>
<tr>
<td>\textit{Br}–\textit{Tl}–\textit{Br} & 88.516 (9)</td>
<td>92.32 (5)</td>
<td>86.37 (3)</td>
<td></td>
</tr>
<tr>
<td>\textit{Br}–\textit{Tl}–\textit{Br} & 90.585 (14)</td>
<td>89.97 (5)</td>
<td>91.61 (5)</td>
<td></td>
</tr>
<tr>
<td>\textit{Br}–\textit{Tl}–\textit{Br} & 177.032 (17)</td>
<td>175.36 (9)</td>
<td>172.75 (6)</td>
<td></td>
</tr>
<tr>
<td>\textit{Br}–\textit{Tl}–\textit{Br} & 119.46 (3)</td>
<td>127.15 (10)</td>
<td>109.89 (8)</td>
<td></td>
</tr>
<tr>
<td>\textit{Br}–\textit{Tl}–\textit{Br} & 120.27 (14)</td>
<td>116.43 (5)</td>
<td>125.05 (4)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{ab}\) Symmetry code [applies to (Ib) only]: \(i) = 2 - x, y, \frac{1}{2} - z.\)

\(^{c}\) Original atom numbering altered to match that of (Ib); (c) Linden \textit{et al.} (2002).

The absorption correction was based on a comparison of the intensities of equivalent reflections in the highly redundant data, as described by Blessing (1995). Attempts at applying a numerical absorption correction yielded significantly inferior results, presumably because the multi-faceted nature of the crystal inhibited the development of an accurate description of the crystal shape. The largest seven peaks of residual electron density (from 2.22 down to 1.00 e Å\(^{-3}\)) were all within 1.2 Å of the \textit{Tl} or \textit{Br} atoms. The methyl \textit{H} atoms were constrained to an ideal geometry, with \text{C}–\text{H} distances of 0.98 Å and \(U_{\text{iso}}(\text{H}) = 1.5U_{\text{eq}}(\text{C})\), but each group was allowed to rotate freely about its \text{C}–\text{N} bond. All other \text{H} atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with \text{C}–\text{H} distances of 0.99 Å and \(U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C})\).

Data collection: \textit{KappaCCD Server Software} (Nonius, 1999); cell refinement: \textit{DENZO–SMN} (Otwinowski & Minor, 1997); data reduction: \textit{DENZO–SMN}; program(s) used to solve structure: \textit{SHELXS97} (Sheldrick, 1997); program(s) used to refine structure: \textit{SHELXL97} (Sheldrick, 1997); molecular graphics: \textit{ORTEPII} (Johnson, 1976); software used to prepare material for publication: \textit{SHELXL97}.

The authors are grateful to Dr A. Coetzee of Nonius BV, Delft, for collecting the data for the title compound during a product demonstration.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1524). Services for accessing these data are described at the back of the journal.
References

metal-organic compounds