Hydrogen-bonded dimers of 1,8,10-trihydroxy-10-(prop-2-enyl)-anthracen-9(10H)-one: $\left.\left.S(6), R^{\{ }{ }_{1}\right\}_{\{2}\right\}(10)$ and $\left.R^{\{ } \mathbf{2}^{2}{ }_{\{2\}}\right\}(14)$ motifs
 S. Thamotharan, V. Parthasarathi, Subodh Kumar, Vijay Kumar and Anthony Linden

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Hydrogen-bonded dimers of 1,8,10-trihydroxy-10-(prop-2-enyl)anthracen$9(10 H)$-one: $S(6), R_{2}^{1}(10)$ and $R_{2}^{2}(14)$ motifs

S. Thamotharan, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a* }}$ Subodh Kumar, ${ }^{\text {b }}$ Vijay Kumar ${ }^{\text {b }}$ and Anthony Linden ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India,
${ }^{\text {b }}$ Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, and 'Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Correspondence e-mail: vpsarati@yahoo.com

Received 14 April 2003
Accepted 25 April 2003
Online 20 May 2003

The central ring of the anthrone system in the title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$, has a shallow envelope conformation, and each of the two outer rings is inclined at an angle of 17.41 (3) ${ }^{\circ}$. In the solid state, the molecules exist as centrosymmetrically related $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers. Two intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, involving the central carbonyl O atom and having a graph-set motif of $S(6)$, are observed. These intramolecular interactions lead co-operatively to an O $\mathrm{H} \cdots \mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ pattern that has a binary graph-set motif of $R_{2}^{1}(10)$.

Comment

Anthracenones substituted at atom C10 have attained paramount significance because of their wide range of biological activities, including antipsoriatic activity and leukotriene biosynthesis inhibition (Hayden et al., 1994; Muller \& Prinz, 1997; Earl et al., 1998). The 5-LO (LO is lipoxygenase) pathway has been the major focus of study because of the pronounced pro-inflammatory role of leukotrienes and the approval of 5-LO inhibitors for the treatment of asthma (Young, 1999). Although less well characterized, the 12-LO pathway may also play an important role in the progression of human diseases such as cancer (Honn et al., 1994) and psoriasis (Ikai, 1999). In this paper, we report the crystal structure of the title compound, (I), and the interesting hydrogen-bond patterns observed in the solid state.

Fig. 1 shows a perspective view of (I), with the atomnumbering scheme. Most of the bond lengths and angles are unexceptional and comparable to those reported for related structures (Brown \& Fullerton, 1980; Skrzat \& Roszak, 1986; Roszak \& Engelen, 1990). The anthrone carbonyl C9=O9
distance $[1.2603(13) \AA$] is significantly longer than that usually observed for carbonyl bonds, probably because atom O9 is involved in two intramolecular hydrogen bonds. The tricyclic anthracenone ring system is non-planar; the dihedral angle between the two halves of the system is $16.30(3)^{\circ}$ and that between the two outer planar rings is 17.41 (3) ${ }^{\circ}$. The central ring adopts a shallow envelope conformation [Cremer \& Pople (1975) puckering parameters are $Q=0.206$ (1) A , $q_{2}=0.189(1) \AA, \quad q_{3}=-0.083(1) \AA, \quad \theta=113.8(4)^{\circ} \quad$ and $\varphi_{2}=357.4(4)^{\circ}$ for the $\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 14-\mathrm{C} 13$ atom sequence (Table 1)]. Atom C10 lies 0.291 (2) \AA from the plane defined by the other five ring atoms. However, in related compounds, shallow boat-like (Brown \& Fullerton, 1980; Roszak \& Engelen, 1990) and chair-like conformations (Skrzat \& Roszak, 1986) have been reported.

(I)

The propene and hydroxy substituents at atom C10 are nearly perpendicular to the least-squares plane of the anthracenone system, with dihedral angles of 86.47 (6) and $86.93(1)^{\circ}$, respectively (the plane of the OH group is defined by atoms $\mathrm{C} 10, \mathrm{O} 15$ and H 15$)$. The hydroxy group is oriented roughly perpendicular to the central ring of the anthrone system in related compounds (Skrzat \& Roszak, 1986; Roszak \& Engelen, 1990).

There are two intramolecular hydrogen bonds between the 1,8-hydroxy groups and the carbonyl O atom of the central ring of (I) (Table 2), each generating an $S(6)$ graph-set motif (Bernstein et al., 1995). Thus, the carbonyl O atom is an acceptor of two hydrogen bonds, and these intramolecular interactions lead co-operatively to an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ pattern, which has a binary graph-set motif of $R_{2}^{1}(10)$. The

Figure 1
A view of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids have been drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii.

Figure 2
The connection of molecules of (I) into dimers [symmetry code: (i) $1-x$, $-y,-z]$. H atoms bonded to C atoms have been omitted for clarity.
hydroxy substituent on atom C10 forms an intermolecular hydrogen bond with the hydroxy O atom on atom C 1 of a neighbouring centrosymmetrically related molecule. This interaction links the molecules into $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonded dimers that have a graph-set motif of $R_{2}^{2}(14)$ (Fig. 2).

Experimental

1,8-Dihydroxyanthraquinone ($750 \mathrm{mg}, 3.1 \mathrm{mmol}$), allyl bromide ($654 \mathrm{mg}, 5.4 \mathrm{mmol}$) and indium metal ($413 \mathrm{mg}, 3.6 \mathrm{mmol}$) were added to a mixture of tetrahydrofuran $(10 \mathrm{ml}), \mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{ml})$ and water $(5 \mathrm{ml})$, and the mixture was stirred at $303-305 \mathrm{~K}$ for $4-6 \mathrm{~h}$. The reaction mixture was then quenched with saturated brine solution and dilute HCl until the mixture became clear. The product was extracted $\left(\mathrm{CHCl}_{3}\right)$, the extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed. Column chromatography (silica gel, $60-120$ mesh) was used to isolate a pure yellow solid from the residue. The resulting yellow solid was recrystallized from a mixture of ethyl acetate and methanol to afford crystals of (I) (yield 90\%, m.p. 394-396 K). MS (m / z, mass/relative intensity): $282\left[M^{+}\right] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.56$ $(1 \mathrm{H}, s, \mathrm{OH}), 2.59-2.62\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 4.58-4.90\left(2 \mathrm{H}, m,=\mathrm{CH}_{2}\right), 5.10-$ $5.24(1 \mathrm{H}, m,=\mathrm{CH}), 6.83\left(2 \mathrm{H}, d, J_{o}=8.2 \mathrm{~Hz}, \mathrm{H}-2,7\right), 7.32(2 \mathrm{H}, d$, $\left.J_{o}=8.2 \mathrm{~Hz}, \mathrm{H}-4,5\right), 7.51\left(2 \mathrm{H}, t, J_{o}=8.2 \mathrm{~Hz}, \mathrm{H}-3,6\right), 12.04(2 \mathrm{H}, s$, $2 \times \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (normal/DEPT-135; $\left.\mathrm{CDCl}_{3}\right): 54.23\left(-\mathrm{ve}, \mathrm{CH}_{2}\right)$, 72.96 (ab, C), 114.32 (ab, C), 116.87 ($+\mathrm{ve}, \mathrm{CH}$), 119.87 ($-\mathrm{ve}, \mathrm{CH}_{2}$), 130.84 (+ve, CH), 136.58 (+ve, CH), 148.58 (ab, C), 161.77 (ab, C), 192.13 (ab, C); UV ${ }_{\text {max }}(\mathrm{EtOH}, \mathrm{nm})$: $374\left(8 \times 10^{2}\right), 299\left(7.4 \times 10^{2}\right), 267$ $\left(6.2 \times 10^{2}\right)$. Analysis found: C $72.6, \mathrm{H} 4.7 \% ; \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$ requires: C 72.34, H 4.96\%.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$

$M_{r}=282.28$
Monoclinic, $P 2_{{ }_{1}} / c$
$a=9.0267$ (1) \AA
$b=20.0965$ (3) \AA
$c=8.0592$ (1) \AA
$\beta=116.0327$ (9) ${ }^{\circ}$
$V=1313.65(3) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans with κ offsets
34734 measured reflections
3832 independent reflections
2963 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$

$$
\begin{aligned}
& \theta_{\max }=30.0^{\circ} \\
& h=-12 \rightarrow 11 \\
& k=-28 \rightarrow 0 \\
& l=0 \rightarrow 11
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0739 P)^{2}\right. \\ & +0.264 P]\end{aligned}$
$+0.264 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$S=1.05$
$\Delta \rho_{\text {max }}=0.33 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Selected torsion angles (${ }^{\circ}$).

C14-C10-C11-C12	$22.51(15)$	C12-C9-C13-C14	$5.78(16)$
C10-C11-C12-C9	$-10.05(17)$	C9-C13-C14-C10	$8.45(16)$
C13-C9-C12-C11	$-4.99(16)$	C11-C10-C14-C13	$-21.75(15)$

Table 2
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 9$	0.925 (19)	1.74 (2)	2.5753 (13)	148.0 (17)
O8-H8 . . 99	1.00 (2)	1.64 (2)	2.5555 (14)	149 (2)
$\mathrm{O} 15-\mathrm{H} 15 \cdots \mathrm{O} 1^{\text {i }}$	0.87 (2)	2.15 (2)	2.9985 (13)	166.3 (17)

Symmetry code: (i) $1-x,-y,-z$.

Hydroxy H atoms were located from difference Fourier maps and their positions and individual isotropic displacement parameters were refined freely. The remaining H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA)$ and were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values equal to $1.5 U_{\text {eq }}(\mathrm{C})$. Reflection 020 was partially obscured by the beam stop and hence was omitted.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brown, K. L. \& Fullerton, T. J. (1980). Acta Cryst. B36, 3199-3201.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Earl, R. A., Zaczek, R., Teleha, C. A., Fisher, B. N., Macaig, C. M., Marynowski, M. E., Logue, A. R., Tam, S. W., Tinker, W. J., Huang, S. M. \& Chorvat, R. J. (1998). J. Med. Chem. 41, 4615-4622.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hayden, P. J., Free, K. E. \& Chignell, C. F. (1994). Mol. Pharmacol. 46, 186198.

Honn, K. V., Tang, D. G., Gao, X., Butovich, I. A., Liu, B., Timar, J. \& Hagmann, W. (1994). Cancer Metastasis Rev. 13, 365-396.
Ikai, K. (1999). J. Dermatol. Sci. 21, 135-146.

Muller, K. \& Prinz, H. (1997). J. Med. Chem. 40, 2780-2787.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Roszak, A. \& Engelen, B. (1990). Acta Cryst. C46, 240-243.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Skrzat, Z. \& Roszak, A. (1986). Acta Cryst. C42, 1194-1196.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Young, R. N. (1999). Eur. J. Med. Chem. 34, 671-685.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1634). Services for accessing these data are described at the back of the journal.

