Hydrogen-bonded dimers of 1,8,10-trihydroxy-10-(prop-2-enyl)-anthracen-9(10H)-one: S(6), R1 \{2\}(10) and R2 \{2\}(14) motifs

S. Thamotharan, V. Parthasarathi, Subodh Kumar, Vijay Kumar and Anthony Linden
Hydrogen-bonded dimers of 1,8,10-trihydroxy-10-(prop-2-enyl)anthracen-9(10H)-one: S(6), R12(10) and R22(14) motifs

S. Thamotharan,* V. Parthasarathi, Subodh Kumar, Vijay Kumar and Anthony Linden

Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, Department of Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, and Institute of Organic Chemistry, University of ZuÈrich, Winterthurerstrasse 190, CH-8057 ZuÈrich, Switzerland

Correspondence e-mail: vpsarati@yahoo.com

Received 14 April 2003
Accepted 25 April 2003
Online 20 May 2003

The central ring of the anthrone system in the title compound, C17H14O4, has a shallow envelope conformation, and each of the two outer rings is inclined at an angle of 17.41 (3)°. In the solid state, the molecules exist as centrosymmetrically related O—H· · · O hydrogen-bonded dimers. Two intramolecular O—H· · · O hydrogen bonds, involving the central carbonyl O atom and having a graph-set motif of S(6), are observed. These intramolecular interactions lead co-operatively to an O—H· · · O· · · H—O pattern that has a binary graph-set motif of R12(10).

Comment

Anthracenones substituted at atom C10 have attained paramount significance because of their wide range of biological activities, including antipsoriatic activity and leukotriene biosynthesis inhibition (Hayden et al., 1994; Muller & Prinz, 1997; Earl et al., 1998). The 5-LO (LO is lipoxygenase) pathway has been the major focus of study because of the pronounced pro-inflammatory role of leukotrienes and the approval of 5-LO inhibitors for the treatment of asthma (Young, 1999). Although less well characterized, the 12-LO pathway may also play an important role in the progression of human diseases such as cancer (Honn et al., 1994) and psoriasis (Ikai, 1999). In this paper, we report the crystal structure of the title compound, (I), and the interesting hydrogen-bond patterns observed in the solid state.

Fig. 1 shows a perspective view of (I), with the atom-numbering scheme. Most of the bond lengths and angles are unexceptional and comparable to those reported for related structures (Brown & Fullerton, 1980; Skrzat & Roszak, 1986; Roszak & Engelen, 1990). The anthrone carbonyl C9—O9 distance [1.2603 (13) Å] is significantly longer than that usually observed for carbonyl bonds, probably because atom O9 is involved in two intramolecular hydrogen bonds. The tricyclic anthracenone ring system is non-planar; the dihedral angle between the two halves of the system is 16.30 (3)° and that between the two outer planar rings is 17.41 (3)°. The central ring adopts a shallow envelope conformation [Cremer & Pople (1975) puckering parameters are Q = 0.206 (1) Å, q2 = 0.189 (1) Å, q3 = −0.083 (1) Å, θ = 113.8 (4)° and ϕ2 = 357.4 (4)° for the C9—C12—C11—C10—C14—C13 atom sequence (Table 1)]. Atom C10 lies 0.291 (2) Å from the plane defined by the other five ring atoms. However, in related compounds, shallow boat-like (Brown & Fullerton, 1980; Roszak & Engelen, 1990) and chair-like conformations (Skrzat & Roszak, 1986) have been reported.

Figure 1

A view of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids have been drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii.
hydroxy substituent on atom C10 forms an intermolecular hydrogen bond with the hydroxy O atom on atom C1 of a neighbouring centrosymmetrically related molecule. This interaction links the molecules into \(O\cdot H\cdot O \) hydrogen-bonded dimers that have a graph-set motif of \(R_2^2(14) \) (Fig. 2).

Experimental

1,8-Dihydroxyanthraquinone (750 mg, 3.1 mmol), allyl bromide (654 mg, 5.4 mmol) and indium metal (413 mg, 3.6 mmol) were added to a mixture of tetrahydrofuran (10 ml), \(CH_3OH \) (10 ml) and water (5 ml), and the mixture was stirred at 303–305 K for 4–6 h. The reaction mixture was then quenched with saturated brine solution (5 ml), and the mixture was stirred at 303±305 K for 4±6 h. The yellow solid was recrystallized from a mixture of ethyl acetate and methanol to afford crystals of (I) (yield 90%, m.p. 394±396 K). MS (m/z) values: 267 (M+), 264, 262, 259, 257, 255, 253, 249, 247, 245, 243, 241, 239, 237, 235, 233, 231, 229, 227, 225, 223, 221, 219, 217, 215, 213, 211, 209, 207, 205, 203, 201, 199, 197, 195, 193, 191, 189, 187, 185, 183, 181, 179, 177, 175, 173, 171, 169, 167, 165, 163, 161, 159, 157, 155, 153, 151, 149, 147, 145, 143, 141, 139, 137, 135, 133, 131, 129, 127, 125, 123, 121, 119, 117, 115, 113, 111, 109, 107, 105, 103, 101, 99, 97, 95, 93, 91, 89, 87, 85, 83, 81, 79, 77, 75, 73, 71, 69, 67, 65, 63, 61, 59, 57, 55, 53, 51, 49, 47, 45, 43, 41, 39, 37, 35, 33, 31, 29, 27, 25, 23, 21, 19, 17, 15, 13, 11, 9, 7, 5, 3, 1.

Crystal data

\(C_{17}H_{14}O_4 \)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>(C_{17}H_{14}O_4)</td>
</tr>
<tr>
<td>Molar mass</td>
<td>266.27 g/mol</td>
</tr>
<tr>
<td>Monoclinic, (P2_1/c)</td>
<td></td>
</tr>
<tr>
<td>(a = 9.0267) Å</td>
<td></td>
</tr>
<tr>
<td>(b = 20.10968) Å</td>
<td></td>
</tr>
<tr>
<td>(c = 8.0892) Å</td>
<td></td>
</tr>
<tr>
<td>(\beta = 116.0327) (9)</td>
<td></td>
</tr>
<tr>
<td>(\nu = 1313.64) (5) Å³</td>
<td></td>
</tr>
<tr>
<td>(Z = 4)</td>
<td></td>
</tr>
</tbody>
</table>

\(\theta = 2.0–30.0^\circ \)

\(\mu = 0.10 \) mm\(^{-1} \)

\(T = 160 \) K

Tablet, yellow

\(0.30 \times 0.25 \times 0.18 \) mm

Data collection

Nonius KappaCCD diffractometer

\(\varphi \) and \(\omega \) scans with \(x \) offsets

34 734 measured reflections

3832 independent reflections

2963 reflections with \(I > 2\sigma(I) \)

\(\text{R}_{	ext{int}} = 0.049 \)

Refinement

Refinement on \(F^2 \)

\(wR(F^2) = 0.047 \)

\(S = 1.05 \)

3832 reflections

202 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1

<table>
<thead>
<tr>
<th>Atom</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
<th>U (Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>0.0881</td>
<td>0.3772</td>
<td>0.1422</td>
<td>0.0474</td>
</tr>
<tr>
<td>O2</td>
<td>0.4044</td>
<td>0.3110</td>
<td>0.2372</td>
<td>0.0474</td>
</tr>
<tr>
<td>O3</td>
<td>0.3043</td>
<td>0.4170</td>
<td>0.3074</td>
<td>0.0474</td>
</tr>
<tr>
<td>O4</td>
<td>0.1643</td>
<td>0.5050</td>
<td>0.3374</td>
<td>0.0474</td>
</tr>
</tbody>
</table>

Hydroxyl H atoms were located from difference Fourier maps and their positions and individual isotropic displacement parameters were refined freely. The remaining H atoms were placed in idealized positions (C–H = 0.95–0.99 Å) and were constrained to ride on their parent atoms, with \(U_{	ext{iso}}(H) \) values equal to 1.5\(U_{	ext{iso}}(C) \). Reflection 020 was partially obscured by the beam stop and hence was omitted.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1634). Services for accessing these data are described at the back of the journal.

References

