organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-(4-Chlorophenyl)-1-methyl-3-oxocyclohexanecarbonitrile

R. T. Sabapathy Mohan,^a S. Kamatchi,^a M. Subramanyam,^b A. Thiruvalluvar^b* and A. Linden^c

^aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, ^bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, and ^cInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Correspondence e-mail: athiru@vsnl.net

Received 3 April 2008; accepted 30 April 2008

Key indicators: single-crystal X-ray study; T = 160 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.108; data-to-parameter ratio = 18.3.

In the title molecule, $C_{14}H_{14}$ CINO, the cyclohexane ring adopts a chair conformation. The cyano group and the methyl group have axial and equatorial orientations, respectively. The benzene ring has an equatorial orientation. A $C-H\cdots\pi$ interaction involving the benzene ring is found in the crystal structure.

Related literature

Subramanyam *et al.* (2007a,b) and Thiruvalluvar *et al.* (2007) have reported the crystal structures of substituted cyclohexane derivatives, in which the cyclohexane rings are in a chair conformation.

Experimental

Crystal data $C_{14}H_{14}CINO$ $M_r = 247.71$

Monoclinic, C2/c*a* = 23.3358 (6) Å b = 6.0031 (2) Å c = 20.8948 (6) Å $\beta = 122.386 (2)^{\circ}$ $V = 2471.81 (14) \text{ Å}^{3}$ Z = 8

Data collection

Nonius KappaCCD area-detector	28232 measured reflections
diffractometer	2822 independent reflections
Absorption correction: multi-scan	2211 reflections with $I > 2\sigma(I)$
(Blessing, 1995)	$R_{\rm int} = 0.058$
$T_{\min} = 0.877, \ T_{\max} = 0.956$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 & 154 \text{ parameters} \\ wR(F^2) &= 0.107 & H\text{-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} = 0.26 \text{ e} \text{ Å}^{-3} \\ 2822 \text{ reflections} & \Delta\rho_{\text{min}} = -0.32 \text{ e} \text{ Å}^{-3} \end{split}$$

Mo $K\alpha$ radiation

 $0.28 \times 0.20 \times 0.18$ mm

 $\mu = 0.29 \text{ mm}^{-1}$

T = 160 (1) K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4B\cdots Cg^{i}$	0.99	2.60	3.5333 (18)	157

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$. Cg is the centroid of the benzene ring.

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06 (UGC-SERO), link No. 2355, 10/01/2007].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2118).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Subramanyam, M., Thiruvalluvar, A., Mohan, R. T. S. & Kamatchi, S. (2007*a*). *Acta Cryst.* E63, 02717.
- Subramanyam, M., Thiruvalluvar, A., Sabapathy Mohan, R. T. & Kamatchi, S. (2007b). Acta Cryst. E63, o2715–o2716.
- Thiruvalluvar, A., Subramanyam, M., Mohan, R. T. S., Kamatchi, S. & Murugavel, K. (2007). Acta Cryst. E63, o2780.

supplementary materials

Acta Cryst. (2008). E64, o1006 [doi:10.1107/S1600536808012816]

5-(4-Chlorophenyl)-1-methyl-3-oxocyclohexanecarbonitrile

R. T. S. Mohan, S. Kamatchi, M. Subramanyam, A. Thiruvalluvar and A. Linden

Comment

Subramanyam *et al.* (2007*a*,b) and Thiruvalluvar *et al.* (2007) have reported the crystal structures of substituted cyclohexane derivatives, in which the cyclohexane rings are in chair conformation. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 1 have axial and equatorial orientations respectively. The benzene ring at position 5 has an equatorial orientation. A C4—H4B··· π (-*x*, *y*, 1/2 - *z*) interaction involving the benzene ring is found in the structure. No classical hydrogen bonds are found in the crystal structure.

Experimental

A mixture of 5–4'-chlorophenyl-3-methylcyclohex-2-enone (6.40 g, 0.02 mol), potassium cyanide (2.60 g, 0.04 mol), ammonium chloride (1.59 g, 0.03 mol), dimethyl formamide (50 ml) and water (2 ml) was heated with stirring for 16–18 h at 353 K. The reaction mixture was cooled to room temperature and poured into water. The product was extracted with CH_2Cl_2 (3x10 ml) and the organic layer was dried, evaporated and purified by column chromatography (hexane-EtOAc, 4.5:1 v/v). The yield of the isolated product was 4.30 g (87%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for Csp^2 , 0.98 Å for methyl C, 0.99 Å for methylene C and 1.00 Å for methine C; $U_{iso}(H) = xU_{eq}(\text{carrier atom})$, where x = 1.5 for methyl and 1.2 for all other C atoms

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.

5-(4-Chlorophenyl)-1-methyl-3-oxocyclohexanecarbonitrile

Crystal data

C ₁₄ H ₁₄ ClNO	$F_{000} = 1040$
$M_r = 247.71$	$D_{\rm x} = 1.331 {\rm ~Mg~m^{-3}}$

Monoclinic, $C2/c$	Melting point: 358 K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 23.3358 (6) Å	Cell parameters from 31960 reflections
b = 6.0031 (2) Å	$\theta = 2.0 - 27.5^{\circ}$
c = 20.8948 (6) Å	$\mu = 0.29 \text{ mm}^{-1}$
$\beta = 122.386 \ (2)^{\circ}$	T = 160 (1) K
$V = 2471.81 (14) \text{ Å}^3$	Prism, colourless
Z = 8	$0.28 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Nonius KappaCCD area-detector diffractometer	2822 independent reflections
Radiation source: Nonius FR590 sealed tube generat- or	2211 reflections with $I > 2\sigma(I)$
Monochromator: horizontally mounted graphite crystal	$R_{\rm int} = 0.058$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 160(1) K	$\theta_{\min} = 2.1^{\circ}$
ϕ and ω scans with κ offsets	$h = -30 \rightarrow 29$
Absorption correction: multi-scan (Blessing, 1995)	$k = -7 \rightarrow 7$
$T_{\min} = 0.877, \ T_{\max} = 0.956$	$l = -27 \rightarrow 27$
28232 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0525P)^2 + 1.7764P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2822 reflections	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
154 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Experimental. Cooling Device: Oxford Cryosystems Cryostream 700

Crystal mount: glued on a glass fibre

Mosaicity (°.): 0.793 (2)

Frames collected: 394

Seconds exposure per frame: 16

Degrees rotation per frame: 1.6

Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	-0.25175 (2)	0.41436 (8)	0.08818 (3)	0.0406 (2)
O3	0.15529 (6)	1.0355 (2)	0.24871 (7)	0.0401 (4)
N12	0.08284 (8)	0.8728 (3)	0.02081 (8)	0.0387 (5)
C1	0.12125 (8)	0.5713 (3)	0.12750 (9)	0.0257 (5)
C2	0.16797 (8)	0.6816 (3)	0.20566 (9)	0.0296 (5)
C3	0.13140 (8)	0.8524 (3)	0.22416 (9)	0.0290 (5)
C4	0.06351 (8)	0.7819 (3)	0.21034 (9)	0.0292 (5)
C5	0.01764 (7)	0.6715 (3)	0.13228 (8)	0.0241 (4)
C6	0.05647 (8)	0.4842 (3)	0.12188 (9)	0.0264 (5)
C11	0.15935 (9)	0.3848 (3)	0.11531 (10)	0.0350 (5)
C12	0.10064 (8)	0.7426 (3)	0.06780 (9)	0.0277 (5)
C51	-0.04910 (7)	0.6001 (3)	0.12231 (8)	0.0239 (4)
C52	-0.10261 (8)	0.7514 (3)	0.09191 (8)	0.0270 (5)
C53	-0.16454 (8)	0.6975 (3)	0.08277 (9)	0.0293 (5)
C54	-0.17302 (8)	0.4867 (3)	0.10337 (9)	0.0289 (5)
C55	-0.12083 (9)	0.3334 (3)	0.13444 (10)	0.0322 (5)
C56	-0.05897 (8)	0.3916 (3)	0.14389 (10)	0.0304 (5)
H2A	0.18685	0.56475	0.24527	0.0355*
H2B	0.20638	0.75446	0.20642	0.0355*
H4A	0.04006	0.91413	0.21396	0.0350*
H4B	0.07101	0.67576	0.25040	0.0350*
Н5	0.00699	0.78708	0.09293	0.0289*
H6A	0.02664	0.41375	0.07173	0.0316*
H6B	0.06906	0.36910	0.16120	0.0316*
H11A	0.17294	0.27012	0.15427	0.0524*
H11B	0.19981	0.44642	0.11878	0.0524*
H11C	0.12964	0.31858	0.06508	0.0524*
H52	-0.09668	0.89480	0.07705	0.0325*
Н53	-0.20035	0.80334	0.06276	0.0353*
H55	-0.12702	0.19013	0.14917	0.0386*
H56	-0.02282	0.28695	0.16550	0.0365*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0277 (2)	0.0501 (3)	0.0477 (3)	-0.0075 (2)	0.0227 (2)	0.0017 (2)
O3	0.0388 (7)	0.0398 (7)	0.0447 (7)	-0.0129 (6)	0.0243 (6)	-0.0142 (6)
N12	0.0368 (8)	0.0456 (9)	0.0359 (8)	-0.0065 (7)	0.0210 (7)	0.0043 (7)
C1	0.0237 (8)	0.0280 (8)	0.0280 (8)	-0.0011 (6)	0.0156 (7)	-0.0011 (6)
C2	0.0240 (8)	0.0357 (9)	0.0279 (8)	-0.0012 (7)	0.0131 (7)	-0.0017(7)
C3	0.0287 (8)	0.0343 (9)	0.0220 (7)	-0.0040 (7)	0.0122 (7)	-0.0022 (7)
C4	0.0299 (8)	0.0316 (9)	0.0297 (8)	-0.0017 (7)	0.0184 (7)	-0.0036 (7)
C5	0.0242 (7)	0.0249 (8)	0.0253 (7)	-0.0005 (6)	0.0146 (6)	0.0019 (6)
C6	0.0257 (8)	0.0276 (8)	0.0287 (8)	-0.0037 (6)	0.0165 (7)	-0.0023 (7)
C11	0.0339 (9)	0.0342 (9)	0.0438 (10)	0.0003 (7)	0.0255 (8)	-0.0037 (8)
C12	0.0248 (8)	0.0338 (9)	0.0284 (8)	-0.0071 (7)	0.0169 (7)	-0.0056 (7)
C51	0.0239 (7)	0.0286 (8)	0.0215 (7)	-0.0019 (6)	0.0136 (6)	-0.0010 (6)
C52	0.0272 (8)	0.0285 (8)	0.0254 (8)	-0.0012 (7)	0.0141 (6)	0.0037 (6)
C53	0.0242 (8)	0.0352 (9)	0.0260 (8)	0.0019 (7)	0.0117 (7)	0.0038 (7)
C54	0.0240 (8)	0.0365 (9)	0.0276 (8)	-0.0071 (7)	0.0147 (7)	-0.0036 (7)
C55	0.0348 (9)	0.0265 (8)	0.0423 (10)	-0.0033 (7)	0.0254 (8)	0.0014 (7)
C56	0.0299 (8)	0.0273 (8)	0.0394 (9)	0.0032 (7)	0.0221 (8)	0.0047 (7)

Geometric parameters (Å, °)

Cl1—C54	1.744 (2)	C54—C55	1.380 (3)
O3—C3	1.215 (2)	C55—C56	1.393 (3)
N12—C12	1.145 (2)	C2—H2A	0.9900
C1—C2	1.545 (2)	C2—H2B	0.9900
C1—C6	1.544 (3)	C4—H4A	0.9900
C1—C11	1.533 (3)	C4—H4B	0.9900
C1—C12	1.484 (2)	С5—Н5	1.0000
С2—С3	1.511 (3)	С6—Н6А	0.9900
C3—C4	1.511 (3)	С6—Н6В	0.9900
C4—C5	1.541 (2)	C11—H11A	0.9800
C5—C6	1.531 (3)	C11—H11B	0.9800
C5—C51	1.518 (3)	C11—H11C	0.9800
C51—C52	1.392 (3)	С52—Н52	0.9500
C51—C56	1.391 (3)	С53—Н53	0.9500
C52—C53	1.391 (3)	С55—Н55	0.9500
C53—C54	1.385 (3)	С56—Н56	0.9500
Cl1…N12 ⁱ	3.335 (2)	H4B···C51 ⁱⁱ	3.0000
Cl1···C12 ⁱ	3.397 (2)	H4B···C52 ⁱⁱ	3.0000
Cl1···H2A ⁱⁱ	3.0900	H4B···C53 ⁱⁱ	2.9600
O3…H6B ⁱⁱⁱ	2.7300	H4B···C54 ⁱⁱ	2.9200
O3…H11A ⁱⁱⁱ	2.6300	H4B···C55 ⁱⁱ	2.8900
O3…H55 ^{iv}	2.7100	H4B···C56 ⁱⁱ	2.9200
N12…Cl1 ^v	3.335 (2)	H5…N12	2.9200

N12…H5	2.9200	H5…C12	2.5200
N12···H6A ^{vi}	2.8200	Н5…Н52	2.3500
N12···H52 ^{vii}	2.6300	Н6А…С56	3.0800
N12…H11C ⁱⁱⁱ	2.8500	H6A…H11C	2.5500
C4…C12	3.527 (3)	H6A…N12 ^{vi}	2.8200
C12…C4	3.527 (3)	H6A…C12 ^{vi}	2.9900
C12····Cl1 ^v	3.397 (2)	H6B···O3 ^{ix}	2.7300
С6…Н56	2.7300	H6B…C56	2.8100
С12…Н5	2.5200	H6B…H11A	2.5700
C12···H6A ^{vi}	2.9900	H6B…H56	2.2500
C51···H4B ⁱⁱ	3.0000	H11A···O3 ^{ix}	2.6300
С52…Н4А	3.0700	H11A···H2A	2.4900
C52···H55 ⁱⁱⁱ	3.0700	Н11А…Н6В	2.5700
C52···H4B ⁱⁱ	3.0000	H11B…H2B	2.5500
C52···H11C ^{vi}	3.0200	H11C…N12 ^{ix}	2.8500
C53···H4B ⁱⁱ	2.9600	Н11С…Н6А	2.5500
C53···H53 ^{viii}	2.9900	H11C····C52 ^{vi}	3.0200
C54···H4B ⁱⁱ	2.9200	H52····C55 ⁱⁱⁱ	3.0700
C55…H52 ^{ix}	3.0700	Н52…Н5	2.3500
C55···H4B ⁱⁱ	2.8900	H52···N12 ^{vii}	2.6300
С56…Н6А	3.0800	H53····C53 ^{viii}	2.9900
С56…Н6В	2.8100	H53····H53 ^{viii}	2.4800
C56…H4B ⁱⁱ	2.9200	H55····C52 ^{ix}	3.0700
H2A…H11A	2.4900	H55…O3 ^x	2.7100
H2A…Cl1 ⁱⁱ	3.0900	Н56…С6	2.7300
H2B…H11B	2.5500	H56····H4A ^{ix}	2.5700
H4A…C52	3.0700	Н56…Н6В	2.2500
H4A…H56 ⁱⁱⁱ	2.5700		
C2—C1—C6	109.48 (15)	С3—С2—Н2В	109.00
C2—C1—C11	110.17 (15)	H2A—C2—H2B	108.00
C2—C1—C12	108.61 (15)	С3—С4—Н4А	109.00
C6—C1—C11	111.80 (15)	C3—C4—H4B	109.00
C6—C1—C12	107.91 (15)	C5—C4—H4A	109.00
C11—C1—C12	108.79 (15)	C5—C4—H4B	109.00
C1—C2—C3	112.70 (16)	H4A—C4—H4B	108.00
O3—C3—C2	121.85 (19)	С4—С5—Н5	107.00
O3—C3—C4	122.09 (18)	С6—С5—Н5	107.00
C2—C3—C4	116.05 (15)	С51—С5—Н5	107.00
C3—C4—C5	112.68 (15)	С1—С6—Н6А	109.00
C4—C5—C6	109.74 (14)	С1—С6—Н6В	109.00
C4—C5—C51	110.28 (14)	С5—С6—Н6А	109.00
C6—C5—C51	114.51 (15)	С5—С6—Н6В	109.00
C1—C6—C5	111.74 (15)	Н6А—С6—Н6В	108.00
N12—C12—C1	178.0 (2)	C1—C11—H11A	109.00

supplementary materials

C5—C51—C52	118.81 (16)	C1—C11—H11B	109.00
C5—C51—C56	123.05 (16)	C1—C11—H11C	109.00
C52—C51—C56	118.12 (18)	H11A—C11—H11B	109.00
C51—C52—C53	121.54 (17)	H11A—C11—H11C	109.00
C52—C53—C54	118.75 (18)	H11B—C11—H11C	109.00
Cl1—C54—C53	118.89 (15)	С51—С52—Н52	119.00
Cl1—C54—C55	119.86 (15)	С53—С52—Н52	119.00
C53—C54—C55	121.2 (2)	С52—С53—Н53	121.00
C54—C55—C56	119.07 (17)	С54—С53—Н53	121.00
C51—C56—C55	121.26 (18)	С54—С55—Н55	120.00
C1—C2—H2A	109.00	С56—С55—Н55	120.00
C1—C2—H2B	109.00	С51—С56—Н56	119.00
С3—С2—Н2А	109.00	С55—С56—Н56	119.00
C6—C1—C2—C3	-51.31 (19)	C4—C5—C51—C52	88.61 (17)
C11—C1—C2—C3	-174.65 (16)	C4—C5—C51—C56	-89.75 (19)
C12—C1—C2—C3	66.3 (2)	C6—C5—C51—C52	-147.05 (14)
C2—C1—C6—C5	58.91 (17)	C6—C5—C51—C56	34.6 (2)
C11—C1—C6—C5	-178.71 (13)	C5-C51-C52-C53	-178.71 (14)
C12—C1—C6—C5	-59.12 (17)	C56—C51—C52—C53	-0.3 (2)
C1—C2—C3—O3	-133.05 (17)	C5-C51-C56-C55	179.36 (15)
C1—C2—C3—C4	47.0 (2)	C52-C51-C56-C55	1.0 (2)
O3—C3—C4—C5	132.96 (17)	C51—C52—C53—C54	-1.1 (2)
C2—C3—C4—C5	-47.1 (2)	C52—C53—C54—Cl1	-177.24 (12)
C3—C4—C5—C6	51.79 (19)	C52—C53—C54—C55	1.8 (2)
C3—C4—C5—C51	178.83 (14)	Cl1—C54—C55—C56	177.93 (14)
C4—C5—C6—C1	-59.17 (18)	C53—C54—C55—C56	-1.1 (3)
C51—C5—C6—C1	176.20 (12)	C54—C55—C56—C51	-0.3 (3)

Symmetry codes: (i) *x*-1/2, *y*-1/2, *z*; (ii) -*x*, *y*, -*z*+1/2; (iii) *x*, *y*+1, *z*; (iv) -*x*, *y*+1, -*z*+1/2; (v) *x*+1/2, *y*+1/2, *z*; (vi) -*x*, -*y*+1, -*z*; (vii) -*x*, -*y*+2, -*z*; (viii) -*x*-1/2, -*y*+3/2, -*z*; (ix) *x*, *y*-1, *z*; (x) -*x*, *y*-1, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C4—H4B…Cg ⁱⁱ	0.99	2.60	3.5333 (18)	157
Symmetry codes: (ii) $-x$, y , $-z+1/2$.				

Fig. 1