Highly Accurate Quartic Force Fields, Vibrational Frequencies, and Spectroscopic Constants for Cyclic and Linear $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$

Xinchuan Huang, ${ }^{\dagger, \dagger}$ Peter R. Taylor, ${ }^{\S, \|}$ and Timothy J. Lee ${ }^{*, \perp}$
${ }^{\dagger}$ SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, California 94043, United States
${ }^{5}$ Victorian Life Sciences Computation Initiative and Department of Chemistry, University of Melbourne, Victoria 3010, Australia
${ }^{\perp}$ NASA Ames Research Center, Moffett Field, California 94035-1000, United States

Abstract

High levels of theory have been used to compute quartic force fields (QFFs) for the cyclic and linear forms of the $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$molecular cation, referred to as $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $\mathrm{l}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. Specifically, the singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations, $\operatorname{CCSD}(\mathrm{T})$, has been used in conjunction with extrapolation to the one-particle basis set limit, and corrections for scalar relativity and core correlation have been included. The QFFs have been used to compute highly accurate fundamental vibrational frequencies and other spectroscopic constants by use of both vibrational second-order perturbation theory and variational methods to solve the nuclear Schrödinger equation. Agreement between our best computed fundamental vibrational frequencies and recent infrared photodissociation experiments is reasonable for most bands, but there are a few exceptions. Possible sources for the discrepancies are discussed. We determine the energy difference between the cyclic and linear forms of $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, obtaining $27.9 \mathrm{kcal} / \mathrm{mol}$ at 0 K , which should be the most reliable available. It is expected that the fundamental vibrational frequencies and spectroscopic constants presented here for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$are the most reliable available for the free gas-phase species, and it is hoped that these will be useful in the assignment of future highresolution laboratory experiments or astronomical observations.

1. INTRODUCTION

The two lowest energy forms of $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$are cyclopropenyl cation and propargyl cation, though the energy difference between these is large, with the cyclic form being approximately $26 \mathrm{kcal} / \mathrm{mol}$ lower in energy. ${ }^{1}$ Cyclopropenyl cation is the smallest aromatic carbocation, which explains its stability, but it should be noted that even with this large energy difference, it is common to find both isomers when they are produced in the gas phase, suggesting that they form via different mechanisms. There has been considerable experimental and theoretical work on both isomers, and we refer the interested reader to refs $1-9$ and references therein. Here, we discuss a few of the earlier works that relate to this study, but first we note that for convenience we shall refer to cyclopropenyl cation (cyclic form) as $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and to propargyl cation (linear form) as $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, and when referring to both isomers we use $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$.

Our interest in c- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$stems from astrochemistry. Cyclopropenylidene, $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{2}$, which possesses a large dipole moment, has been shown to be ubiquitous in the interstellar medium (ISM), ${ }^{10-12}$ and its main formation pathway has been proposed to be due to dissociative recombination of an electron with $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+13,14}$ Hence there has been considerable interest in detecting $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in the ISM for more than two decades. However, $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$possesses $D_{3 h}$ symmetry, resulting in no permanent dipole moment, and thus is not detectable via microwave (rotational) spectroscopy. Furthermore, there is no
experimental high-resolution rovibrational spectrum available to analyze astronomical observations. In fact, until recently there was no gas-phase spectrum of its vibrational frequencies, but instead only matrix isolation spectra or spectra from salts. ${ }^{15,16}$ That changed in 2002 when Dopfer and co-workers ${ }^{2-4}$ used infrared photodissociation (IRPD) experiments to observe the $\mathrm{C}-\mathrm{H}$ stretching region of $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$complexed with various ligands. In 2010, Ricks et al. ${ }^{5}$ improved upon these experiments by measuring the gas-phase infrared (IR) spectrum of the isomers of $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$that were associated with one Ar atom. The results of these latter two studies are generally consistent with the matrix isolation experiments, though many more bands were assigned in the Ricks et al. IRPD experiment, going down to approximately $1100 \mathrm{~cm}^{-1}$. One inconsistency that was noted by Ricks et al., however, was that the assignment for the doubly degenerate CH stretching mode, $v_{4}\left(\mathrm{e}^{\prime}\right)$, at $3182 \mathrm{~cm}^{-1}$ was about $44 \mathrm{~cm}^{-1}$ higher than theory. They attributed this to problems in scaling factors for the theoretical calculations and suggested that further theoretical work was needed. Thus one of the purposes of the present study was to provide theoretical predictions of the fundamental vibrational frequencies of both $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$wherein scaling is not required.

[^0]Determination of an anharmonic force field and fundamental vibrational frequencies has actually been reported for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in two 1989 studies by Lee et al. ${ }^{6}$ and by Xie and Boggs. ${ }^{7}$ Lee et al. computed a full quartic force field (QFF) at the Hartree-Fock level of theory to determine anharmonic corrections via secondorder rovibrational perturbation theory, which they then appended to harmonic frequencies computed at the second-order Møller-Plesset (MP2) perturbation level of theory. They reported an array of spectroscopic constants from their anharmonic analysis including anharmonic constants, vibration-rotation interaction constants, and quartic and sextic centrifugal distortion constants for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and its deuterated isotopologues. One interesting issue they uncovered was the fact that the standard formula used to compute the spectroscopic constants for symmetric top molecules ${ }^{17-19}$ can be incorrect when there is a non-totally-symmetric, nondegenerate vibrational mode, as there is for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. The issue was discussed in some detail, and Lee et al. ${ }^{6}$ confirmed the modifications they made to the standard symmetric top formula by slightly perturbing the mass of one atom, thereby slightly breaking the $D_{3 h}$ symmetry and forcing the SPECTRO program ${ }^{20}$ to use an asymmetric top analysis. Xie and Boggs ${ }^{7}$ used the MP4(SDQ) level of theory (fourth-order Møller-Plesset perturbation theory including single, double, and quadruple excitations but excluding the more expensive triple excitations) to construct a partial potential energy surface that included diagonal force constants through sixth-order, but only second-order off-diagonal force constants (in a local internal coordinate system). They then used an approximate variational approach to solve the nuclear Schrödinger equation. A detailed comparison of the two studies was presented by Lee et al. ${ }^{6}$ In short, for the levels of theory used, both studies gave reasonable agreement with the matrix isolation experiments available at the time and with each other, though it is interesting to note that Lee et al. obtained $3178 \mathrm{~cm}^{-1}$ for $v_{4}\left(\mathrm{e}^{\prime}\right)$ while Xie and Boggs obtained $3149 \mathrm{~cm}^{-1}$.

The higher energy isomer, $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, has also received considerable attention from both theory and experiment. It was observed in both of the IRPD experiments mentioned above, ${ }^{2-5}$ and it has also been studied recently at high levels of theory by Botschwina and Oswald. ${ }^{8}$ Botschwina and Oswald used an explicitly correlated method, $\operatorname{CCSD}(T)-\mathrm{F} 12 \mathrm{x}(\mathrm{x}=\mathrm{a}, \mathrm{b}),{ }^{21,22}$ which is based on the singles and doubles coupled-cluster method that includes a perturbational correction for triple excitations, denoted $\operatorname{CCSD}(\mathrm{T}) .{ }^{23}$ They computed a fivedimensional potential energy function, involving the totally symmetric modes, which included up through sixth-order diagonal constants and up through fourth-order off-diagonal force constants, and they solved the nuclear Schrödinger equation variationally. The five dimensions included symmetric CH_{2} stretch, free acetylenic CH stretch, CH_{2} scissor mode, and the two CC stretching modes (a correction was applied to the antisymmetric CH_{2} fundamental to account for the neglect of anharmonic coupling). Botschwina and Oswald ${ }^{8}$ found generally good agreement with the IRPD experiment of Ricks et al. ${ }^{5}$

More recently, Botschwina and Oswald ${ }^{9}$ used the CCSD-(T)-F12x $(x=a, b)$ levels of theory to examine the equilibrium structure and harmonic vibrational frequencies of Ar complexes of both $c-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and l- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. They located three distinct minima for Ar complexes of both isomers, though one of the C_{s} minima for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$was noticeably lower in
energy than the other two minima. For the $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$isomer, all three minima were relatively close in energy. The results of this latter study reaffirmed the assignment by Botschwina and Oswald ${ }^{8}$ of the $3238 \mathrm{~cm}^{-1}$ band in the IRPD experiments of Ricks et al. ${ }^{5}$ to the acetylenic CH stretch vibration in $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$.

The accuracy of state-of-the art ab initio predictions for fundamental vibrational frequencies has improved considerably in the last 20 years, and it is common now to determine fundamental vibrational frequencies to within a few wavenumbers $\left(\mathrm{cm}^{-1}\right)$ of high-resolution experiments (for example, see refs 24-27). To this end, theoretical spectroscopists predicted more than a decade ago^{28} that state-of-the art ab initio predictions were becoming reliable enough that it should be possible to assign an astronomical spectrum by use of only $a b$ initio predictions and without high-resolution laboratory experimental data for difficult species, such as small molecular anions and cations. This has now occurred only a few years ago when Cernicharo et al. ${ }^{29}$ reported detecting the small molecular anion $\mathrm{C}_{5} \mathrm{~N}^{-}$in the C-rich star IRC +10216 and based their assignment on the ab initio calculations of Aoki ${ }^{30}$ and Botschwina and Oswald. ${ }^{31}$

Thus our goal in the present study is to compute highly accurate QFFs for the $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$molecules and to predict their rovibrational spectroscopic constants to very high accuracy. These data are of interest to astronomers now more than ever, given that the Herschel Space Observatory is in operation and collecting high-resolution data, the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) has begun its series of initial science flights, and the James Webb Space Telescope (JWST), often referred to as the replacement for the Hubble Space Telescope, will launch later in this decade. Furthermore, the Atacama Large Millimeter Array (ALMA) is set to start early science operations in late 2011. Some of the instruments for these telescopes operate at longer wavelengths and thus are not useful for rovibrational spectroscopy of c- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, but they may be able to detect deuterium and ${ }^{13} \mathrm{C}$ isotopologues due to their increased sensitivity, which is especially interesting for isotopologues of $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. The parent isotopologue has no permanent dipole moment, and hence it cannot be observed via rotational spectroscopy, but isotopologues that do not retain $D_{3 h}$ symmetry will exhibit a small permanent dipole moment since the center of nuclear charge and center of mass of the molecule will no longer be the same (and the molecule rotates about its center of mass). For l- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, the lowest energy vibration may be within range for instruments on all of the above telescopes, but since $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$ possesses a permanent dipole moment, the parent isotopologue as well as all deuterium and ${ }^{13} \mathrm{C}$ isotopologues may be detectable. However, a full spectroscopic analysis of all deuterium and ${ }^{13} \mathrm{C}$ isotopologues of $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$ is beyond the scope of the present study and will be reported separately. ${ }^{32}$

2. THEORETICAL APPROACH

A. Details of Electronic Structure Methods. We first describe details of the electronic structure calculations, including details of the corrections that have been included. In general, we follow the approach we have developed in recent years, ${ }^{33,34}$ in which we extrapolate $\operatorname{CCSD}(\mathrm{T})$ energies to the one-particle basis set limit, ${ }^{35}$ followed by addition of corrections for scalar

Figure 1. Equilibrium structures, vibrationally averaged structures (numbers in italic type), and rotational constants of c-C $\mathrm{C}_{3} \mathrm{H}_{3}^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, determined from our best QFF. See text for details.

Figure 2. Internal coordinate definitions used for the $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$cation.
relativity ${ }^{36}$ and core correlation. The valence $\operatorname{CCSD}(\mathrm{T})$ calculations were performed in conjunction with Dunning's correlationconsistent basis sets. ${ }^{37}$ We will denote the cc-pVXZ ($\mathrm{X}=\mathrm{T}, \mathrm{Q}$, or 5) basis sets as TZ, QZ, or 5Z. A correction for scalar relativity is evaluated at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{TZ}$ level of theory by use of the Douglas-Kroll approximation. ${ }^{36}$ As we pointed out previously, ${ }^{33}$ the scalar relativity integrals lose precision beyond the TZ basis set, which is problematic for computing QFFs. Core correlation was included as a correction by performing $\operatorname{CCSD}(\mathrm{T})$ calculations, with and without the core correlated, with the Martin-Taylor basis set designed for this purpose. ${ }^{38}$

QFFs have been determined according to the prescription described previously. ${ }^{33,34}$ For both $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, a reference geometry was determined at the $\operatorname{CCSD}(\mathrm{T}) / 5 \mathrm{Z}$ level of theory with corrections for core correlation and scalar relativity taken into account. A grid of displacement geometries centered on this reference structure (and based on the symmetry internal coordinates discussed later) was then used for all calculations. The number of unique geometries was 1961 and 2479 for c- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, respectively. As indicated, $\operatorname{CCSD}(\mathrm{T})$ energies are extrapolated to the one-particle basis set limit by use of a three-point formula that experience has shown to be reliable. ${ }^{33,34,39}$ The scalar relativity and core-correlation corrections are added, and the energies are used in a least-squares fit of a QFF for each molecule. For $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, the 1961 unique energies were augmented to a redundant set of 3837 energies that was used to fit 460 unique coefficients in the QFF. The sum of the squared residuals was 1.31×10^{-17} a.u. ${ }^{2}$. For $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, the

Table 1. Equilibrium Structure, Rotational Constants, and Harmonic Frequencies for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+a}$

Geometry Parameters			
	$R(\mathrm{C}-\mathrm{C})$	1.359	
	$r(\mathrm{C}-\mathrm{H})$	1.077	
	$A_{\mathrm{e}}=B_{\mathrm{e}}$	1.032	
	C_{e}	0.516	
	$\angle \mathrm{C}-\mathrm{C}-\mathrm{H}$	150.	
	$\angle \mathrm{C}-\mathrm{C}-\mathrm{C}$	60.0°	
Harmonic Vibrational Frequencies			
ω_{1}	$a_{1}{ }^{\prime}$ (breat	str)	3312.3
ω_{2}	$a_{1}^{\prime}{ }^{\prime}$ (breath	C str)	1650.8
ω_{3}	a_{2}^{\prime} (in-pla		1058.2
ω_{4}	e^{\prime} (in-plan		3265.1
ω_{5}	e^{\prime} (in-plan		1326.7
ω_{6}	e^{\prime} (in-plan		946.0
ω_{7}	$a_{2}{ }^{\prime \prime}$ (symm	nds)	764.5
ω_{8}	$e^{\prime \prime}$ (asymm	nds)	1023.4

${ }^{a}$ Determined from our best QFF $[\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pV}(\mathrm{T}, \mathrm{Q}, 5) \mathrm{Z}$ extrapolation + core-correlation + scalar relativistic corrections]. See text for more details.

2479 unique energies were augmented to a redundant set of 4565 energies that was used to fit 572 unique coefficients in the QFF (sum of the squared residuals $=2.61 \times 10^{-17}$ a.u. ${ }^{2}$). The final QFF for each molecule was then obtained by an analytical transformation to the exact minimum (i.e., to where the gradient terms are exactly zero). We note that it has been shown that some molecules with $\mathrm{C}-\mathrm{C}$ multiple bonds exhibit erratic behavior for bending frequencies, including molecules like acetylene, ethylene, and benzene, ${ }^{39-43}$ although cyclopropenylidene does not show this behavior. ${ }^{44}$ The problem is associated with ensuring that the one-particle basis set is properly balanced with respect to saturation in the lower angular momentum functions (i.e., s and p functions) and inclusion of higher angular momentum functions. Though we report only our best QFF here for both c- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, we have examined in detail several QFFs for both isomers and found that neither suffers from this issue. All electronic structure calculations were performed with the MOLPRO 2006.1 program. ${ }^{45}$
B. Details of Coordinate Systems and Vibrational Methods. For both molecules, the QFFs were determined in symmetry

Table 2. Equilibrium Structure, Rotational Constants, and Harmonic Frequencies for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+a}$

Geometry Parameters			
R_{1}		$1.085506 \AA$	
R_{2}		1.345571 Å	
R_{3}		1.227265 Å	
R_{4}		1.072298 Å	
θ_{1}		120.355°	
$\angle \mathrm{C}-\mathrm{C}-\mathrm{H} \quad 180.0^{\circ}$			
$\angle \mathrm{C}-\mathrm{C}-\mathrm{C} \quad 180.0^{\circ}$			
$A_{\mathrm{e}} \quad 9.53209 \mathrm{~cm}$			
$B_{\mathrm{e}} \quad 0.32329 \mathrm{~cm}^{-1}$			
C_{e}		$0.31269 \mathrm{~cm}^{-1}$	
Harmonic Vibrational Frequencies			
ω_{1}	$a_{1}(\mathrm{C}-\mathrm{H}$		3367.15
ω_{2}	$a_{1}\left(\mathrm{CH}_{2}\right.$		3122.73
ω_{3}	$a_{1}(\mathrm{C} \equiv \mathrm{C}$		2131.15
ω_{4}	$a_{1}\left(\mathrm{CH}_{2}\right.$		1483.44
ω_{5}	$a_{1}(\mathrm{C}-\mathrm{C}$		1137.60
ω_{6}	$b_{1}\left(\mathrm{CH}_{2}\right.$		3232.42
ω_{7}	$b_{1}\left(\mathrm{CH}_{2}\right.$		1039.76
ω_{8}	$b_{1}(\mathrm{CCH}$	end)	631.00
ω_{9}	b_{1} (CCC	end)	292.51
ω_{10}	$b_{2}\left(\mathrm{CH}_{2}\right.$		1120.50
ω_{11}	$b_{2}(\mathrm{CCH}$	ar bend)	882.00
ω_{12}	b_{2} (CCC	ear bend)	254.71

${ }^{a}$ Determined from our best QFF $[\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pV}(\mathrm{T}, \mathrm{Q}, 5) \mathrm{Z}$ extrapolation + core-correlation + scalar relativistic corrections]. See text and Figure 1 for more details and the definition of $R_{1}-R_{4}$ and θ_{1}.
internal coordinates. For $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, we use the following definition of symmetry internal coordinates:

$$
\begin{aligned}
& S_{1}\left(A_{1}\right)=R_{4}(\mathrm{C}-\mathrm{H}) \\
& S_{2}\left(A_{1}\right)=\left(R_{1 \mathrm{a}}+R_{1 \mathrm{~b}}\right) / \sqrt{2} \\
& S_{3}\left(A_{1}\right)=\left(R_{2}[\mathrm{C}=\mathrm{C}]+R_{3}[\mathrm{C} \equiv \mathrm{C}]\right) / \sqrt{2} \\
& S_{4}\left(A_{1}\right)=\left(R_{2}[\mathrm{C}=\mathrm{C}]-R_{3}[\mathrm{C} \equiv \mathrm{C}]\right) / \sqrt{2} \\
& S_{5}\left(A_{1}\right)=\theta_{1}\left(\angle \mathrm{H}_{\mathrm{a}} \mathrm{CH}\right. \\
& \left.\mathrm{b}_{\mathrm{b}}\right) \\
& S_{6}\left(B_{1}\right)=\left(R_{1 \mathrm{a}}-R_{1 \mathrm{~b}}\right) / \sqrt{2} \\
& S_{7}\left(B_{1}\right)=\operatorname{LIN} 1\left(\mathrm{C}-\mathrm{C}-\mathrm{C}-\overrightarrow{\mathrm{r}}_{\text {out }}\right) \\
& S_{8}\left(B_{1}\right)=\operatorname{LIN1}\left(\mathrm{C}-\mathrm{C}-\mathrm{H}-\overrightarrow{\mathrm{r}}_{\text {out }}\right) \\
& S_{9}\left(B_{1}\right)=\left(\angle \mathrm{H}_{\mathrm{a}} \mathrm{CC}-\angle \mathrm{H}_{\mathrm{b}} \mathrm{CC}\right) / \sqrt{2} \\
& S_{10}\left(B_{2}\right)=\operatorname{LIN1}\left(\mathrm{C}-\mathrm{C}-\mathrm{C}-\overrightarrow{\mathrm{r}}_{\text {in }}\right) \\
& S_{11}\left(B_{2}\right)=\operatorname{LIN1}\left(\mathrm{C}-\mathrm{C}-\mathrm{H}-\overrightarrow{\mathrm{r}}_{\text {in }}\right) \\
& S_{12}\left(B_{2}\right)=\tau\left(\mathrm{H}_{\mathrm{a}}-\mathrm{C}-\mathrm{C}-\mathrm{H}_{\mathrm{b}}\right)
\end{aligned}
$$

where the simple internal coordinates for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$are given in Figure 1. Note that S_{7} and S_{8} are in-plane bending modes and S_{10} and S_{11} are out-of plane bending modes. The definitions of LIN1 (a-b-c-d) and $\tau(\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d})$ are taken from the INTDER program: ${ }^{46}$

$$
\begin{aligned}
\operatorname{LIN} 1(\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}) & =\sin ^{-1}\left[\overrightarrow{\mathrm{e}}_{\mathrm{d}}\left(\overrightarrow{\mathrm{e}}_{\mathrm{bc}} \times \overrightarrow{\mathrm{e}}_{\mathrm{ba}}\right)\right] \\
\tau(\mathrm{a}-\mathrm{b}-\mathrm{c}-\mathrm{d}) & =\sin ^{-1}\left[\overrightarrow{\mathrm{e}}_{\mathrm{ba}}\left(\overrightarrow{\mathrm{e}}_{\mathrm{cb}} \times \overrightarrow{\mathrm{e}}_{\mathrm{cd}}\right) /\left(\sin \phi_{\mathrm{abc}} \sin \phi_{\mathrm{bcd}}\right)\right]
\end{aligned}
$$

where the \vec{e} are unit vectors defined as $\vec{e}_{\mathrm{ab}}=\vec{e}_{\mathrm{b}}-\vec{e}_{\mathrm{a}}$. The reference vectors $\vec{r}_{\text {in }}$ and $\vec{r}_{\text {out }}$ were defined as follows:

$$
\begin{gathered}
\overrightarrow{\mathrm{r}}_{\text {in }}=\overrightarrow{\mathrm{R}}_{2} \times\left(\overrightarrow{\mathrm{R}}_{1 \mathrm{a}} \times \overrightarrow{\mathrm{R}}_{1 \mathrm{~b}}\right) \\
\overrightarrow{\mathrm{r}}_{\text {out }}=\overrightarrow{\mathrm{R}}_{2} \times \overrightarrow{\mathrm{r}}_{\text {in }}=\overrightarrow{\mathrm{R}}_{2} \times\left[\overrightarrow{\mathrm{R}}_{2} \times\left(\overrightarrow{\mathrm{R}}_{1 \mathrm{a}} \times \overrightarrow{\mathrm{R}}_{1 \mathrm{~b}}\right)\right]
\end{gathered}
$$

Figure. 1 also gives the planar equilibrium and ground-state (GS) vibrationally averaged structures for both $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and l- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, as well as the GS vibrationally averaged rotational

Table 3. Vibrationally Averaged Structure, Rotational Constants, and Vibrational Fundamental Frequencies for c- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+a}$

${ }^{a}$ Determined from our best QFF; second-order perturbation theory (2 ndPT) and vibrational variational CI results, where $n \mathrm{MR}$ represents the highest mode coupling level in the potential term expansions, are presented and compared to experiment. See text for more details. ${ }^{b}$ Fermi type 1 resonance with $2 v_{2}{ }^{c}{ }^{c}$ Fermi type 1 resonance with $2 \nu_{7} .{ }^{d}$ References 15 and.16. ${ }^{e}$ Reference $5{ }^{f}$ Reference $2{ }^{g}$ Reference $3{ }^{h}$ Reference 4

Table 4. $x_{\text {st }}$ and $g_{\mathrm{tt}^{\prime}}$ Anharmonic Constant Matrices for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+a}$

constants. The vibrationally averaged quantities are the "position average," that is, r_{z}, computed from second-order perturbation theory. Symmetry relationships for the quadratic, cubic, and quartic force constants are given later.

For $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, we use the exact same definition of symmetry internal coordinates as given by Lee et al. ${ }^{6}$ They are repeated here for convenience:

$$
\begin{aligned}
& S_{1}\left(a_{1}{ }^{\prime}\right)=\left(R_{1}+R_{2}+R_{3}\right) / \sqrt{3} \\
& S_{2}\left(a_{1}^{\prime}\right)=\left(r_{1}+r_{2}+r_{3}\right) / \sqrt{3} \\
& S_{3}\left(a_{2}^{\prime}\right)=\left(\alpha_{1}+\alpha_{3}+\alpha_{5}-\alpha_{2}-\alpha_{4}-\alpha_{6}\right) / \sqrt{6} \\
& S_{4 \mathrm{a}}\left(e^{\prime}\right)=\left(2 r_{1}-r_{2}-r_{3}\right) / \sqrt{6} \\
& S_{5 \mathrm{a}}\left(e^{\prime}\right)=\left(2 \beta_{1}-\beta_{2}-\beta_{3}\right) / \sqrt{6} \\
& S_{6 \mathrm{a}}\left(e^{\prime}\right)=\left(\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{5}-2 \alpha_{3}-2 \alpha_{6}\right) / \sqrt{12} \\
& S_{7}\left(a_{2}^{\prime \prime}\right)=\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right) / \sqrt{3} \\
& S_{8 \mathrm{a}}\left(e^{\prime \prime}\right)=\left(2 \gamma_{1}-\gamma_{2}-\gamma_{3}\right) / \sqrt{6} \\
& S_{4 \mathrm{~b}}\left(e^{\prime}\right)=\left(r_{2}-r_{3}\right) / \sqrt{2} \\
& S_{5 \mathrm{~b}}\left(e^{\prime}\right)=\left(\beta_{2}-\beta_{3}\right) / \sqrt{2} \\
& S_{6 \mathrm{~b}}\left(e^{\prime}\right)=\left(\alpha_{2}+\alpha_{5}-\alpha_{1}-\alpha_{4}\right) / 2 \\
& S_{8 \mathrm{~b}}\left(e^{\prime \prime}\right)=\left(\gamma_{2}-\gamma_{3}\right) / \sqrt{2}
\end{aligned}
$$

where the simple internal coordinates R, r, α, and β are the bond lengths and bond angles defined in Figure 2, and γ refers to the out-of-plane bending angle for a given $\mathrm{C}-\mathrm{H}$ bond with respect to the plane defined by the three C atoms (see Figure 2).

Fundamental vibrational frequencies were computed by use of either a vibrational variational method (VAR) or second-order perturbation theory (PT). ${ }^{17-19}$ The MULTIMODE program ${ }^{47}$ was used for the VAR calculations, while the SPECTRO program ${ }^{20}$ was used for the PT calculations and for computing other spectroscopic constants. For $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, the QFF was analytically transformed into a simple-internal, Morse-cosine coordinate system for the vibrational variational calculations. The benefits of using Morse coordinates for the stretches when a QFF is used in vibrational variational calculations can be traced back to Meyer et al. ${ }^{48}$ and Carter and Handy ${ }^{49}$ more than 20 years ago. Later, in 1994, Dateo et al. ${ }^{50}$ first defined the Morse β parameter solely on the
computed force constants (i.e., $\beta=-F_{\text {iii }} / 3 F_{\text {ii }}$) instead of optimizing it with respect to experimental data. We follow this β definition, which requires that the transformed diagonal cubic force constant for the stretch vanish. For $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, it is necessary to use a symmetry-adapted Morse-cosine coordinate system (for the stretches and bends) because it is a ringed system. In addition, instead of the out-of-plane coordinates ($S_{7}, S_{8 a}$ and $S_{8 \mathrm{~b}}$), we use the sine of these coordinates. Rather than transforming the symmetry internal coordinate QFF into the symmetryadapted Morse-cosine-sine coordinate system, we refit the QFF. We note that transformation of the QFF into a Morse-cosine coordinate system is important (and in the case of $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, a Morse-cosine-sine coordinate system), otherwise some fundamental vibrational frequencies, in particular stretching frequencies, can be too high by tens of cm^{-1}. As discussed in ref 50, the Morse-cosine coordinate system serves to build in the correct limiting behavior for the potential function.

3. RESULTS AND DISCUSSION

A. Equilibrium Structures and Harmonic Frequencies. The equilibrium structure, equilibrium rotational constants, and harmonic frequencies for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$are presented in Tables 1 and 2, respectively. The equilibrium structures obtained in this work have somewhat shorter bond distances relative to those published recently ${ }^{8,9}$ using $\operatorname{CCSD}\left(\mathrm{T}^{*}\right)$ - F 12 a , and the HCH angle determined here for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$is about 1° larger. We note that the longer $\mathrm{C}-\mathrm{C}$ bond in $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}, \mathrm{R}_{2}$ (see Figure 1), is intermediate between a typical double and single bond length, but it is much closer to that in ethylene rather than ethane. Conversely, the corresponding harmonic frequency ω_{4} is intermediate between a typical double bond and a single bond, but its value is closer to that for ethane rather than ethylene. Previous authors have referred to this $\mathrm{C}-\mathrm{C}$ bond as a "single bond," so we adopt that terminology here, but we note that it is intermediate between a single and double bond, which also means that there will not be free rotation of the terminal CH_{2} group about this bond. The shorter $\mathrm{C}-\mathrm{C}$ bond is very much like a typical triple bond both in its bond length and harmonic frequency.

The harmonic frequencies obtained here for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$are in reasonable agreement with those given by Botschwina and Oswald, ${ }^{8}$ though our stretching harmonic frequencies are generally a few cm^{-1} higher, consistent with the shorter bond lengths obtained in the present work. We note that we use a different convention for the symmetry labeling of the modes relative to refs 5 and 8 -essentially the B_{1} and B_{2} labels are reversed. That is, following the convention that Herzberg used for $C_{2 v}$ planar molecules, B_{1} is used for in-plane antisymmetric modes and B_{2} is reserved for out-of-plane vibrations, and that is the convention adopted here. For $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, the harmonic frequencies given in Table 1 are in reasonable agreement with the MP2 values from ref 6 and the MP4 (SDQ) values of ref 7, given the differences in levels of theory.

As indicated previously, the energy difference between $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$is about $26 \mathrm{kcal} / \mathrm{mol}$, but the levels of theory used in the present study should yield a much more definitive value. The energies that we obtain at the minimum are $115.7647467662 E_{\mathrm{h}}$ and $-115.717377491 E_{\mathrm{h}}$ for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, respectively. The electronic energy difference is thus $10396.4 \mathrm{~cm}^{-1}$. The anharmonic zero-point energies given by second-order PT are 9841.5 and $9208.0 \mathrm{~cm}^{-1}$, which includes

Table 5. Vibration-Rotation Interaction Constants and Quartic and Sextic Centrifugal Distorsion Constants for c- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+} .{ }^{a}$

vib-rot constant (MHz)			distortion constant				Watson S reduction			
mode	$\alpha^{\text {B }}$	$\alpha^{\text {C }}$		(MHz)		(Hz)		(MHz)		(Hz)
1	92.1	45.9	$\tau_{\text {araa }}^{\prime}$	-0.291	$\Phi_{\text {aaa }}$	0.183	D_{J}	0.073	H_{J}	0.259
2	90.0	44.9	$\tau_{\text {bbbb }}^{\prime}$	-0.291	$\Phi_{\text {bbb }}$	0.335	$D_{\text {JK }}$	-0.122	$\mathrm{H}_{J K}$	-1.119
3	$-13.8{ }^{\text {b }}$	16.6	$\tau_{\text {cccc }}^{\prime}$	-0.023	$\Phi_{\text {ccc }}$	0.001	D_{K}	0.055	H_{K}	1.466
4	85.7	42.2	$\tau_{\text {a abb }}^{\prime}$	-0.291	$\Phi_{\text {aab }}$	0.956	d_{1}	0.000	H_{K}	-0.605
5	-15.2	42.1	$\tau_{\text {aace }}^{\prime}$	-0.047	$\Phi_{\text {abb }}$	-0.179	d_{2}	0.000	h_{1}	0.000
6	$137.8^{\text {b }}$	21.7	$\tau_{\text {bbcc }}^{\prime}$	-0.047	$\Phi_{\text {aac }}$	-0.171			h_{2}	0.000
7	$-109.8{ }^{\text {b }}$	-10.9			$\Phi_{\text {acc }}$	0.002			h_{3}	-0.038
8	$23.7{ }^{\text {b }}$	-26.4			$\Phi_{\text {bcc }}$	0.002				
					$\Phi_{\text {bbc }}$	-0.171				
					$\Phi_{\text {abc }}$	-0.342				

${ }^{a}$ See text for more details. ${ }^{b}$ Modes for which Coriolis resonance has been taken into account.
the E_{0} term (the polyatomic equivalent of the a_{0} Dunham coefficient for diatomics). ${ }^{51}$ The corresponding MULTIMODE zero-point energies are 9834.0 and $9189.1 \mathrm{~cm}^{-1}$, for ${\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}}^{+}$ and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, respectively. The 0 K energy difference we obtain is $27.9 \mathrm{kcal} / \mathrm{mol}$, which is slightly larger than what has been reported experimentally. ${ }^{1}$ While the experimental value is not at 0 K , it also has a few kilocalories per mole uncertainty; see ref 1 and references therein for more details. The $27.9 \mathrm{kcal} / \mathrm{mol} 0 \mathrm{~K}$ value obtained in the present work should be the most reliable available.
B. Fundamental Vibrational Frequencies and Spectroscopic Constants. The GS vibrationally averaged structure and rotational constants, and the fundamental vibrational frequencies obtained for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in the present work are presented in Table 3. Other spectroscopic constants obtained from secondorder perturbation theory are presented in Table 4 (anharmonic constants) and Table 5 (vibration-rotation interaction constants, and quartic and sextic centrifugal distortion constants). For the variational calculations, we used four-mode and fivemode coupling in order to demonstrate the convergence. Comparison of the fundamental vibrational frequencies for the two columns labeled VCI 4MR and VCI 5MR shows that indeed there is excellent convergence, with the largest difference being only $1.5 \mathrm{~cm}^{-1}$ for $v_{7} .4 \mathrm{MR} / 5 \mathrm{MR}$ refer to the number of modes coupled in the potential energy expansion formula, while fourmode coupling was adopted in all Coriolis integrations. For most vibrational modes, the difference is $1.1 \mathrm{~cm}^{-1}$ or less, and for three of the modes the difference is less than $1 \mathrm{~cm}^{-1}$. On the basis of these comparisons and experience, we would estimate that the variational fundamentals are converged to better than $1.0 \mathrm{~cm}^{-1}$ for the VCI 5MR values. Comparison of the VCI 5MR results with the fundamentals obtained from second-order perturbation theory shows good agreement between the two approaches, with the differences being consistent with what we usually find for tightly bound molecules that do not possess a large-amplitude motion. Specifically, the largest difference is $3.8 \mathrm{~cm}^{-1}$ for v_{2}, but this mode is affected by a Fermi type 1 resonance with $2 v_{7}$. For most of the vibrational modes the difference is less than $3 \mathrm{~cm}^{-1}$, again showing that second-order perturbation theory is a good approximation for solving the nuclear Schrödinger equation for a tightly bound molecule.

Our best results should be the VCI 5MR fundamentals. Comparison of these to the available experimental data shows

Table 6. Vibrationally Averaged Structure, Rotational Constants, and Vibrational Fundamental Frequencies for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+a}$

${ }^{a}$ Determined from our best QFF. Second-order perturbation theory (2nd PT) and vibrational variational CI results, where $n \mathrm{MR}$ represents the highest mode coupling level in the potential term expansions, are presented and compared to experiment. See text for more details and Figure 1 for coordinate definition. ${ }^{b}$ Fermi resonance type 1 with $2 v_{4}$. ${ }^{c}$ Fermi resonance type 2 with $v_{11}+v_{12}$. ${ }^{d}$ Fermi resonance type 2 with $v_{3}+v_{7} .{ }^{e}$ Reference $5 .{ }^{f}$ Reference 2. ${ }^{g}$ Reference 3. ${ }^{h}$ Reference 4.
reasonable agreement for the matrix isolation values where we might expect differences of up to $20 \mathrm{~cm}^{-1}$ or so due to a matrix shift. In fact, the largest differences between the matrix isolation

Table 7. Matrix of Anharmonic Constants x_{st} for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+a}$

mode	1	2	3	4	5	6	7	8	9	10	11	12
1	-54.889											
2	-0.146	-27.831										
3	-5.779	-1.751	-8.478									
4	-1.230	-31.736	-3.781	-2.102								
5	1.635	-2.248	-15.680	-3.110	-0.881							
6	-0.335	-113.563	-0.901	-21.757	-1.314	-32.215						
7	-1.719	-11.150	-2.502	-17.450	-2.595	-11.681	-3.844					
8	-20.642	-2.628	-11.108	-6.735	-2.675	-2.796	-8.808	-5.238				
9	-2.301	-0.575	-8.408	-2.241	3.420	-0.498	-1.749	-2.636	-0.679			
10	-3.339	-10.399	-6.230	-5.004	-3.113	-20.36	-4.794	-16.356	-2.625	-9.210		
11	-20.948	-1.829	0.992	-2.515	-3.018	-1.529	-3.121	27.704	1.906	-13.415	-6.040	
12	-2.493	-1.797	-5.193	-3.296	7.240	-1.374	-2.602	1.710	21.446	-9.393	-4.744	-2.569

${ }^{a}$ Determined from our best QFF. All values are in cm^{-1}. See text for more details.

Table 8. Vibration-Rotation Interaction Constants and Quartic and Sextic Centrifugal Distorsion Constants for 1-C $\mathrm{C}_{3} \mathrm{H}_{3}^{+a}$

mode	vib-rot constants (MHz)			distortion constants				Watson S reduction			
	$\alpha^{\text {A }}$	$\alpha^{\text {B }}$	$\alpha^{\text {C }}$		(MHz)		(Hz)		(MHz)		(Hz)
1	-21.277	25.909	24.454	$\tau_{\text {aaaa }}{ }^{\prime}$	-85.377	$\Phi_{\text {aaa }}$	4809.680	D_{J}	0.003	H_{J}	-0.001
2	4879.106	6.846	11.688	$\tau_{\text {bbbb }}$	-0.012	$\Phi_{\text {bbb }}$	0.000	$D_{J K}$	0.479	$H_{J K}$	4.988
3	151.243	55.273	51.836	$\tau^{\prime} \mathrm{cccc}$	-0.010	$\Phi_{\text {ccc }}$	0.000	$D_{\text {K }}$	20.862	$H_{K J}$	-2267.423
4	-3188.803	$3.755^{\text {b }}$	11.156	$\tau_{\text {aabb }}^{\prime}$	-1.931	$\Phi_{\text {abb }}$	-742.911	d_{1}	-0.000	H_{K}	7072.116
5	225.856	$23.754^{\text {b }}$	$24.150^{\text {b }}$	τ^{\prime} aacc	-0.007	$\Phi_{\text {abb }}$	5.534	d_{2}	-0.000	h_{1}	-0.000
6	3052.329	8.691	9.786	$\tau_{\text {bbcc }}^{\prime}$	-0.011	$\Phi_{\text {aac }}$	-1515.360			h_{2}	0.001
7	$-3310.921^{\text {b }}$	-8.912	6.571^{b}			$\Phi_{\text {acc }}$	-0.059			h_{3}	0.000
8	$336.274^{\text {b }}$	-12.094	-0.485			$\Phi_{\text {bcc }}$	0.000				
9	-2468.800^{b}	-54.337	$-24.327^{\text {b }}$			$\Phi_{\text {bbc }}$	-0.001				
10	$3490.356^{\text {b }}$	$0.795^{\text {b }}$	-5.110			$\Phi_{\text {abc }}$	5.962				
11	$403.182^{\text {b }}$	2.727	-6.288								
12	$1278.499^{\text {b }}$	$-42.247^{\text {b }}$	-62.886								

Table 9. Complete Set of Non-Zero Quadratic and Cubic Force Constants for $\mathrm{c}_{-} \mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in a Symmetry Internal Coordinate System ${ }^{a}$

F_{11}	7.217432	$F_{441}=F_{464 b 1}$	-0.1448	$F_{655}=-F_{\text {65bsb }}=-F_{\text {6bsbs }}$	-0.4172
F_{21}	-0.098532	$F_{442}=F_{46462}$	-19.1998	$F_{65 b 3}=-F_{6653}$	0.3817
F_{22}	5.798770	$F_{444}=-F_{4464 b}$	-13.5720		
F_{33}	0.262156	$F_{541}=F_{\text {5b4b1 }}$	0.2160	$F_{661}=F_{66661}$	-0.1679
$F_{44}=F_{4 b 4 b}$	5.800512	$F_{542}=F_{56462}$	-0.1399	$F_{662}=F_{66662}$	-0.0729
$F_{54}=F_{5 b 4 b}$	-0.009 810	$F_{544}=-F_{5464 b}=-F_{5 b 44 b}$	-0.0774	$F_{664}=-F_{6664 b}=-F_{66664}$	0.0495
$F_{55}=F_{\text {sbsb }}$	5.316006	$F_{54 b 3}=-F_{5 b 43}$	-0.1386	$F_{665}=-F_{6665 b}=-F_{666 b 5}$	-0.2352
$F_{64}=F_{664 b}$	0.017754	$F_{\text {S51 }}=F_{\text {Sbsbl }}$	-13.225	$F_{666}=-F_{66666}$	0.0959
$F_{65}=F_{\text {bbsb }}$	0.298226	$F_{552}=F_{\text {SbSb } 2}$	-0.2622	F_{771}	-0.2385
$F_{66}=F_{\text {6bbb }}$	0.414829	$F_{554}=-F_{\text {Sbs } 46}=-F_{\text {Sbbb }}$	-0.1110	F_{772}	-0.0827
F_{77}	0.371862	$F_{555}=-F_{\text {sbsbs }}$	-18.9961	$F_{874}=F_{8674 \mathrm{~b}}$	-0.0760
$\mathrm{F}_{88}=\mathrm{F}_{\text {8bsb }}$	0.490412	$F_{641}=F_{664 b 1}$	-0.0146	$F_{875}=F_{\text {sb7sb }}$	0.3281
F_{111}	-22.5615	$F_{642}=F_{664 b 2}$	-0.0009	$F_{876}=F_{8676 b}$	0.2836
F_{211}	-0.1640	$F_{644}=-F_{64 b 4 b}=-F_{6 b 4 b 4}$	0.0073	$\mathrm{F}_{881}=\mathrm{F}_{8 \mathrm{bsb}}$	-0.4132
F_{221}	0.1680	$F_{64 b 3}=-F_{6643}$	-0.0602	$F_{882}=F_{888 b 2}$	-0.1193
F_{222}	-19.2136	$F_{651}=F_{665 b 1}$	-0.1032	$F_{884}=-F_{8884 b}=-F_{8 b 8 b 4}$	-0.0776
F_{331}	-0.2589	$F_{652}=F_{665 b 2}$	-0.1790	$F_{885}=-F_{8885 b}=-F_{8 b 8 b 5}$	0.3106
F_{332}	-0.0596	$F_{654}=-F_{665 b 4}=-F_{665 b 4 b}=-F_{665 b 4 b}$	0.1160	$F_{886}=-F_{88866}=-F_{85866}$	0.2418

[^1]

F_{1111}	59.44	$F_{6654}=F_{6 \mathrm{~b} 6 \mathrm{bb} 4 \mathrm{~b}}$
F_{2111}	0.20	$F_{6655}=F_{6 \mathrm{~b} 6 \mathrm{bb} 5 \mathrm{~b}}$
F_{2211}	-0.45	$F_{665 b 4 b}=F_{6 \mathrm{~b} 6 \mathrm{~b} 54}$
F_{2221}	-0.35	$F_{665 \mathrm{~b} 5 \mathrm{~b}}=F_{666 \mathrm{~b} 5}$
F_{2222}	56.66	$F_{7744}=F_{774 \mathrm{~b} 4 \mathrm{~b}}$
F_{3311}	0.02	$F_{7754}=F_{775 \mathrm{~b} 4 \mathrm{~b}}$
F_{3321}	0.11	$F_{7755}=F_{775 \mathrm{~b}} \mathrm{~b}$
F_{3322}	-0.00	$F_{7764}=F_{776 \mathrm{~b} 4 \mathrm{~b}}$
F_{3333}	0.04	$F_{7765}=F_{776 \mathrm{~b}} \mathrm{~b}$
F_{7711}	-0.11	$F_{7766}=F_{776 \mathrm{~b} 6 \mathrm{~b}}$
F_{7721}	0.15	$F_{8741}=F_{8 \mathrm{~b} 74 \mathrm{~b} 1}$
F_{7722}	-0.10	$F_{8742}=F_{8 b 74 b 2}$
F_{7733}	0.67	$F_{8751}=F_{8 \mathrm{~b} 75 \mathrm{~b} 1}$
F_{77463}	-0.02	$F_{8752}=F_{8 b 75 b 2}$
$F_{775 b 3}$	0.01	$F_{8761}=F_{8 \mathrm{~b} 76 \mathrm{bl}}$
$F_{776 \mathrm{~b} 3}$	0.04	$F_{8762}=F_{8 \mathrm{~b} 76 \mathrm{~b} 2}$
F_{7777}	0.09	$F_{8811}=F_{8 b 8 b 11}$
$F_{4411}=F_{4 \mathrm{~b} 4 \mathrm{~b} 11}$	-0.37	$F_{8821}=F_{8 \mathrm{~b} 8 \mathrm{~b} 21}$
$F_{4421}=F_{4 \mathrm{~b} 4 \mathrm{~b} 21}$	-0.42	$F_{8822}=F_{8 \mathrm{~b} 8 \mathrm{~b} 22}$
$F_{4422}=F_{4 b 4 b 22}$	56.74	$F_{8833}=F_{8 \mathrm{~b} 8 \mathrm{~b} 33}$
$F_{4433}=F_{4 \mathrm{~b} 4 \mathrm{~b} 33}$	-0.00	$F_{8844}=F_{8 \mathrm{~b} 8 \mathrm{~b} 4 \mathrm{~b} 4 \mathrm{~b}}$
$F_{5411}=F_{5 b 4 b 11}$	-0.26	$F_{884 \mathrm{~b} 4 \mathrm{~b}}=\mathrm{F}_{8 \mathrm{~b} 8 \mathrm{~b} 44}$
$F_{5421}=F_{5 b 4 b 21}$	0.18	$F_{8854}=F_{8 \mathrm{~b} 8 \mathrm{bbb4b}}$
$F_{5422}=F_{5 b 4 b 22}$	0.35	$F_{8855}=F_{8 \mathrm{~b} 8 \mathrm{bbb5b}}$
$F_{5433}=F_{5 \mathrm{bb} 4 \mathrm{~b} 33}$	-0.02	$F_{885 \mathrm{~b} 4 \mathrm{~b}}=F_{8 \mathrm{bb} \mathrm{b} 54}$
$F_{5511}=F_{5 b 5 b 11}$	20.59	$F_{885 \mathrm{~b} 5 \mathrm{~b}}=F_{8 \mathrm{bbb} 55}$
$F_{5521}=F_{5 b 5 b 21}$	0.50	$F_{8864}=F_{8 \mathrm{~b} 8 \mathrm{~b} 644 \mathrm{~b}}$
$F_{5522}=F_{5 b 5 b 22}$	-0.34	$F_{8865}=F_{8 \mathrm{~b} 8 \mathrm{bbbb}}$
$F_{5533}=F_{5 b 5 b 33}$	-0.14	$F_{8866}=F_{8 \mathrm{~b} 8 \mathrm{bb6b}}$
$F_{5544}=F_{5 b 5 b 44}$	-0.33	$F_{886 \mathrm{~b} 4 \mathrm{~b}}=F_{8 \mathrm{bb}} \mathrm{b}^{4}$
$F_{554 \mathrm{~b} 4 \mathrm{~b}}=F_{5 \mathrm{~b} 5 \mathrm{~b} 4 \mathrm{~b} 4 \mathrm{~b}}$	-0.34	$F_{886 \mathrm{bbb}}=F_{8 \mathrm{bbb} 65}$
$F_{6411}=F_{6 b 4 b 11}$	0.05	$F_{886 \mathrm{~b} 6 \mathrm{~b}}=F_{8 \mathrm{bbb} 66}$
$F_{6421}=F_{6 \mathrm{~b} 4 \mathrm{~b} 21}$	0.02	$F_{8877}=F_{8 b 8 b 77}$
$F_{6422}=F_{6 \mathrm{~b} 4 \mathrm{~b} 22}$	0.05	$F_{4441}=-F_{4 \mathrm{~b} 4 \mathrm{~b} 41}$
$F_{6433}=F_{6 \mathrm{bb4b} 33}$	0.01	$F_{4442}=-F_{4 \mathrm{~b} 4 \mathrm{~b} 42}$
$F_{6511}=F_{6 b 5 b 11}$	-0.22	$F_{4 \mathrm{~b} 443}=-F_{4 \mathrm{~b} 4 \mathrm{~b} 4 \mathrm{b3}}$
$F_{6521}=F_{6 \mathrm{~b} 521}$	0.03	$F_{54 \mathrm{~b} 31}=-F_{5 \mathrm{~b} 431}$
$F_{6522}=F_{6 b 5 b 22}$	-0.16	$F_{54 \mathrm{~b} 32}=-F_{5 b 432}$
$F_{6533}=F_{6 b 5 b 33}$	0.04	$F_{5551}=-F_{5 \mathrm{~b} 5 \mathrm{~b} 1}$
$F_{6544}=F_{6 \mathrm{~b} 5 \mathrm{~b} 4 \mathrm{~b} 4 \mathrm{~b}}$	-0.10	$F_{5552}=-F_{5 b 5 b 52}$
$F_{654 b 4 b}=F_{6 b 5 b 44}$	-0.13	$F_{5 b 553}=-F_{5 b 5 b 5 b 3}$
$F_{6554}=F_{6 \mathrm{~b} 55 \mathrm{~b} 4 \mathrm{~b}}$	-0.13	$F_{64631}=-F_{66431}$
$F_{65 b 5 b 4}=F_{6 b 554 b}$	0.05	$F_{64 b 32}=-F_{6 b 432}$
$F_{6611}=F_{6 \mathrm{~b} 6 \mathrm{~b} 11}$	0.03	$F_{65 b 31}=-F_{6 b 531}$
$F_{6621}=F_{666621}$	0.24	$F_{65 b 32}=-F_{6 \mathrm{~b} 532}$
$F_{6622}=F_{6 \mathrm{~b} 6 \mathrm{~b} 22}$	-0.11	$F_{6661}=-F_{666661}$
$F_{6633}=F_{666 b 33}$	0.09	$F_{6662}=-F_{666662}$
$F_{6644}=F_{6 \mathrm{~b} 64 \mathrm{~b} 4 \mathrm{~b}}$	-0.09	$F_{6 \mathrm{~b} 663}=-F_{6 \mathrm{~b} 6 \mathrm{~b} 6 \mathrm{~b} 3}$
$F_{664 b 4 b}=F_{6 \mathrm{~b} 6 \mathrm{~b} 44}$	-0.12	$F_{874 \mathrm{~b} 3}=-F_{8 \mathrm{~b} 743}$

12 Non-Symmetry-Unique Constants

$F_{7654}=\left(F_{6644}-F_{6655}\right) / 2$	0.00	$F_{9854}=\left(F_{8844}-F_{8855}\right) / 2$	0.01	$F_{9876}=\left(F_{8866}-F_{8877}\right) / 2$	0.00
$F_{65 b 4 b 4}=F_{6 \mathrm{~b} 54 \mathrm{~b} 4}=\left(F_{6544}-F_{654 \mathrm{~b} 4 \mathrm{~b}}\right) / 2$	0.02	$\mathrm{~F}_{65 \mathrm{~b} 54 \mathrm{~b}}=F_{6 \mathrm{~b} 554}=\left(F_{6554}-F_{65 \mathrm{~b} 5 \mathrm{~b} 4}\right) / 2$	-0.09	$F_{6 \mathrm{~b} 65 \mathrm{~b} 4}=F_{6 \mathrm{~b} 64 \mathrm{~b}}=\left(F_{6654}-F_{665 \mathrm{~b} 4 \mathrm{~b}}\right) / 2$	0.06
$F_{8 \mathrm{~b} 84 \mathrm{~b} 4}=\left(F_{8844}-F_{884 \mathrm{~b} 4 \mathrm{~b}}\right) / 2$	-0.07	$F_{8 \mathrm{~b} 85 \mathrm{~b} 5}=\left(F_{8855}-F_{885 \mathrm{~b} 5 \mathrm{~b}}\right) / 2$	-0.50	$F_{8 \mathrm{~b} 86 \mathrm{~b} 6}=\left(F_{8866}-F_{886 \mathrm{~b} 6 \mathrm{~b}}\right) / 2$	
$F_{8 \mathrm{~b} 854 \mathrm{~b}}=F_{8 \mathrm{~b} 85 \mathrm{~b} 4}=\left(F_{8854}-F_{885 \mathrm{~b} 4 \mathrm{~b}}\right) / 2$	0.07	$F_{8 \mathrm{~b} 864 \mathrm{~b}}=F_{8 \mathrm{~b} 86 \mathrm{~b} 4}=\left(F_{8864}-F_{886 \mathrm{~b} 4 \mathrm{~b}}\right) / 2$	-0.01	$F_{8 \mathrm{~b} 865 \mathrm{~b}}=F_{8 \mathrm{~b} 86 \mathrm{~b} 5}=\left(F_{8865}-F_{886 \mathrm{~b} 5 \mathrm{~b}}\right) / 2$	

${ }^{a}$ See text for more details. Units of force constants are mdyn $/ \AA^{n} \cdot \operatorname{rad}^{m}$ appropriate for an energy unit of mdyn $\cdot \AA(1 \mathrm{mdyn} \cdot \AA \equiv 1 \mathrm{aJ})$.

Table 11. Complete Set of Non-Zero Quadratic and Cubic Force Constants for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in a Symmetry Internal Coordinate System ${ }^{a}$

F_{11}	6.029788	$F_{\text {xx }}$	0.167448	F_{444}	15.2311	F_{765}	-0.0249	F_{965}	0.0962	$F_{y x 5}$	-0.0131
F_{21}	0.005712	$F_{y x}$	0.000441	F_{511}	0.0002	F_{771}	-0.0363	F_{971}	0.0092	$F_{y y 1}$	-0.1937
F_{22}	5.540738	$F_{y y}$	0.385229	F_{521}	0.0047	F_{772}	0.0272	F_{972}	0.0408	$F_{y y 2}$	-0.0120
F_{31}	-0.119775	$F_{\text {zx }}$	0.000222	F_{522}	-0.1527	F_{773}	-0.9361	F_{973}	0.1397	$F_{y y}$	-0.4253
F_{32}	0.072319	$F_{\text {zy }}$	0.015043	F_{531}	-0.0050	F_{774}	0.1170	F_{974}	-0.0580	$F_{y y 4}$	0.1286
F_{33}	11.885630	$F_{z z}$	0.238988	F_{532}	0.1349	F_{775}	0.0325	F_{975}	-0.0546	$F_{y y 5}$	0.0064
F_{41}	0.144706	F_{111}	-34.5269	F_{533}	0.0086	F_{861}	0.0002	F_{981}	0.0010	$F_{\text {zx1 }}$	-0.0026
F_{42}	0.074156	F_{211}	-0.0010	F_{541}	-0.0043	F_{862}	-0.0015	F_{982}	0.0095	$\mathrm{F}_{\mathrm{zx} 2}$	-0.0063
F_{43}	-2.970 851	F_{221}	-0.0055	F_{542}	0.1028	F_{863}	0.0073	F_{983}	-0.0528	$F_{\text {zx } 3}$	-0.0961
F_{44}	10.906522	F_{222}	-22.3363	F_{543}	0.1047	F_{864}	0.0128	F_{984}	0.0503	$F_{\text {zx } 4}$	0.0867
F_{51}	0.001714	F_{311}	0.1236	F_{544}	0.2391	F_{865}	-0.0053	F_{985}	-0.0134	$F_{\text {zx } 5}$	0.0082
F_{52}	0.065407	F_{321}	0.0056	F_{551}	0.0024	F_{871}	-0.0002	F_{991}	0.0086	$F_{\text {zyl }}$	-0.0032
F_{53}	-0.231773	F_{322}	0.0869	F_{552}	-0.3928	F_{872}	-0.0025	F_{992}	-0.2028	$F_{\text {zy } 2}$	-0.0007
F_{54}	-0.173960	F_{331}	-0.0602	F_{553}	-0.1270	F_{873}	0.1851	F_{993}	-0.1762	$F_{\text {zy } 3}$	0.0332
F_{55}	0.682966	F_{332}	-0.1223	F_{554}	-0.0076	F_{874}	-0.2203	F_{994}	0.0320	$F_{\text {zy } 4}$	-0.0053
F_{66}	5.533706	F_{333}	-48.6285	F_{555}	-0.2658	F_{875}	0.0052	F_{995}	0.3241	$F_{\text {zy } 5}$	0.0068
F_{76}	-0.002 072	F_{411}	-0.1359	F_{661}	-0.0068	F_{881}	-0.1404	$F_{\text {xx1 }}$	-0.0281	$F_{\text {zz1 }}$	-0.0031
F_{77}	0.283223	F_{421}	-0.0008	F_{662}	-22.4743	F_{882}	-0.0192	$F_{\mathrm{xx} 2}$	-0.0185	$F_{z z 2}$	-0.0768
F_{86}	-0.004 390	F_{422}	0.1801	F_{663}	0.1739	F_{883}	-0.6080	$F_{\text {xx }}$	-0.3280	$\mathrm{F}_{\mathrm{zz} 3}$	-0.2289
F_{87}	0.109569	F_{431}	0.0147	F_{664}	0.3239	F_{884}	0.7960	$F_{\text {xx } 4}$	-0.0273	$F_{z z 4}$	-0.0271
F_{88}	0.227801	F_{432}	-0.2336	F_{665}	0.2737	F_{885}	-0.0047	$F_{x \times 5}$	0.0040	$F_{z z 5}$	0.4596
F_{96}	0.109515	F_{433}	13.1266	F_{761}	-0.0003	F_{961}	-0.0011	$F_{y x 1}$	0.0022		
F_{97}	-0.067911	F_{441}	0.0753	F_{762}	-0.0023	F_{962}	0.0428	$F_{y \times 2}$	0.0098		
F_{98}	-0.023 719	F_{442}	-0.5212	F_{763}	0.0911	F_{963}	-0.2622	$F_{y \times 3}$	0.1577		
F_{99}	0.514243	F_{443}	-45.3965	F_{764}	0.0117	F_{964}	-0.3053	$F_{y x 4}$	0.0810		

${ }^{a}$ See text for more details. Units of force constants are mdyn $/ \AA^{n} \cdot \mathrm{rad}^{m}$ appropriate for an energy unit of mdyn $\cdot \AA(1 \mathrm{mdyn} \cdot \AA \equiv 1 \mathrm{aJ}) \cdot \mathrm{x}, \mathrm{y}$, and z represent the 10th, 11th, and 12th internal coordinates, respectively.
results and our VCI 5MR values are only 9.6 and $12.0 \mathrm{~cm}^{-1}$ for v_{3} and v_{8}, which are both determined indirectly (see refs 15 and 16 for details). Comparison of the VCI 5MR results to the IRPD values from Ricks et al. ${ }^{5}$ shows very good agreement for v_{5}, but for v_{4} we obtain a value that is $47.2 \mathrm{~cm}^{-1}$ lower than their assignment at $3182 \mathrm{~cm}^{-1}$. Thus our best estimate for ν_{4} is consistent with previous theory and calls into question their assignment. Further, the value we obtain for $v_{4}, 3134.8 \mathrm{~cm}^{-1}$, is more consistent with the assignment from Dopfer and coworkers. ${ }^{2-4}$ One of the reasons we performed the variational calculations in the present study was to be certain that we had ν_{4} described properly since our second-order perturbation theory results did not agree with the assignment from Ricks et al. Given the levels of theory used in the present study and the fact that we have ruled out any possible resonance issues in solving the vibration problem, we can definitively conclude that the $3182 \mathrm{~cm}^{-1}$ band observed by Ricks et al. either is not representative of the free gas-phase spectrum for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$or is due to a different vibrational mode or species. We have examined the variational CI results for possible combination bands or overtones in the variational calculations that might explain the band at $3182 \mathrm{~cm}^{-1}$, but none appear for either $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$or $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, at least not within $10 \mathrm{~cm}^{-1}$. There is a doubly degenerate band involving three quanta, $2 v_{6}+v_{5}$, that is very close to $3182 \mathrm{~cm}^{-1}$, but this seems unlikely. It may be that the band observed at $3182 \mathrm{~cm}^{-1}$ is shifted somewhat due to complexation with the Ar atom, or it may be due to a different species.

Given the levels of theory used in the present study, the spectroscopic constants presented for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in Tables 4 and 5 should be highly accurate, and it is hoped that these will be useful
in the future assignment of high-resolution rovibrational spectra from either laboratory experiments or astronomical observations.

The vibrationally averaged structure and rotational constants and fundamental vibrational frequencies obtained for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in the present work are presented in Table 6. These are "positionaveraged" values (i.e., r_{z}) computed with second-order perturbation theory. Other spectroscopic constants obtained from sec-ond-order perturbation theory are presented in Table 7 (anharmonic constants) and Table 8 (vibration-rotation interaction constants and quartic and sextic centrifugal distortion constants). Comparison of the VCI 4MR and 5MR results contained in Table 6 shows that the variational calculations are converged to better than $1 \mathrm{~cm}^{-1}$, similar to the situation for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. In fact, the largest difference is only $0.8 \mathrm{~cm}^{-1}$ for v_{7}. Comparison of the VCI 5MR and second-order perturbation theory fundamental vibrational frequencies for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$shows reasonable agreement, though not as good as that found for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. The largest differences occur for the $\mathrm{C}-\mathrm{H}$ stretches ν_{1} and v_{6}, being 10.3 and $9.1 \mathrm{~cm}^{-1}$, respectively. We note that v_{6} is involved with a significant Fermi type 2 resonance with $\nu_{3}+v_{7}$, though the difference between the two components of the resonance is fairly consistent between second-order perturbation theory and VCI 5MR (35.7 versus $34.0 \mathrm{~cm}^{-1}$). Differences between secondorder perturbation theory and VCI 5MR for the other fundamental vibrational frequencies are more in line with the differences we found for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. Interestingly, the agreement between second-order perturbation theory and VCI 5MR for the $2 v_{4}$ overtone and the $v_{12}+v_{4}$ combination band is not nearly as good, which is expected as one moves into the realm of less pure states and stronger coupling.

Table 12. Complete Set of Non-Zero Quartic Force Constants for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in a Symmetry Internal Coordinate System ${ }^{a}$

F_{1111}	177.60	F_{53}	-0.01	5	-0.97	F_{8641}	02	F_{8855}	-0.21		0.02		0.03		-0.01	$F_{\text {zx21 }}$	-0.02		0.08
F	0.01	F_{5332}	0.02	6	81.74	F_{8642}	06	F_{8866}	-0.21	F_{9822}	. 01	F_{9998}	-0.01	55	-0.13	2	-0.04	86	15
F_{2211}	-0.14	F	-0.35	F_{7611}	02		0.02		0.02		. 03		-0.34		0.03		0.00		-0.10
F_{2}	0.01		. 00	F_{7621}	-0.02		0.0	F_{8877}	-0.12	F_{9832}	-0.01		-0.27		-0.		. 0		. 04
	79.45		0.01		0.10		-0.0	F_{8886}	. 09		0.00		-0.01		-0.06		-0.07		. 02
F_{3111}	-0.36	F	-0.08	F_{7631}	. 00	F_{8652}	-0.03	F	-0.19	F_{9841}	0.03		-0.32		-0.05		-0.03	97	-0.05
F	0.03		. 02		0.06		-0.03		-0.14		-0.02		-0.02		-0.30		0.03		-0.19
F_{3221}	-0.03		-0.05	F	-0.33	F	-0.01		-0.02		0.03		0.06		0.08		-0.15	\bigcirc	-0.02
	-0.65		-0.16		05		. 05		. 00		-0.01		-0.56	$F_{y \times 96}$	-0.01		0.08	,	-0.01
F_{3311}	-0.50	F_{5}	. 02		. 01	F_{8}	. 07	F	-0.31	F	-0.02	F	-0.01		0.32	$F_{\text {zx } 51}$	-0.01	$F_{\text {zyyx }}$	-0.02
	0.06		-0.08		-0.13		-0.12		-0.03		. 0		04		0.26		. 02		00
	-0.54		-0.05		-0.10	F_{8}	-0.03		-0.01		-0.01		. 17		-0.06		-0.01		0.21
	0.30		0.70		-0.02		-0.05		0.00		0.0		. 02		0.17		0.04		0.03
	-0.22		-0.17		-0.03		. 00		00		0.00		0.04		-0.34		. 05	22	-0.24
	163.8		0.02		0.11		0.00		. 03		-0.010		0.05		0		0.00		. 02
	0.31		-0.0		-0		-0.0		. 26		-0.01		0.06		-0.21		-0.09		0.10
	0.01		-0.0		-		0.03		. 52		0.04		-0.08		7		-0.01		33
	0.00		0.15		0.05		-0		-0.02		-0.01		-0.32		. 00		-0.05	41	-0.01
	-0.67		-0.26		-				0.05				-0		-0.35		-0.05		0.07
	0.30		-						-		02		0.01		-0.14		0.06	${ }^{43}$	-0.06
	-0		0.12		-0.2		0.01		-0.1		-0.		. 47		0.00		. 00		0.03
	-0		-0		0.08		-0.0		0.12		. 0		. 8		-0.		-0.000		0.04
	-0.39		-0.8		0.04		-0.0		-0.3		-0.3		-0.4		73		-0.1	${ }_{z 252}$	16
	0.	F_{5551}	-0.05		63		0.03		. 07		0.0		-0.01		0.00		-0.22	zz53	-0.31
	-46.59		0.26		0.03	F	-0.02	F	. 01		0.21		-0.06		. 02	析	-0.07		-0.09
	-0.52	F_{5}	-0.16	F_{7742}	-0.10	F_{8}	-0.05	F	0.06	F_{9933}	-0.30		0.26		0.09		0.02		0.82
	0.02	F	-0.29		70	F_{8776}	0.0	F_{9731}	-0.02	F_{9941}	-0.03		0.2		-0.04		0.00		-0.25
	-0.65	F	-0.08	-	. 84	7	-0.2	32	-0.19	2	0.2		-0.23		-0.15		0.00	72	-0.01
	-0.09	F_{6}	-0.22	F_{7751}	00	F_{8811}	-0.17		0.1		-0.5	F	-0.57	$F_{\text {yy66 }}$	-0.17		0.01	8277	-0.09
	0.45	F_{6}	0.0		0.08	21	0.00		-0.02		-1.5		-0.09		-0.03		-0.03	886	0.0
	161		81.00		0.0		-0.20		-0.10		0.0		-0.03		5		0.01	2287	-0.03
	-0.16	F_{6631}	0.12		-0.0	3	0.32		0.13		-0.1		0.00		0.23		-0.01	$\mathrm{F}_{\mathrm{zz} 88}$	-0.24
	0.30	F_{663}	-0		-0	F_{8}	0.06		10	F_{995}	-0.0		-0.27		-0.20		-0.05	zz96	0.0
	-52	F_{6633}	-0		-	833	-		0.05		0.04		09		. 53	cy 4	-0.03	$F_{z z 97}$	0.00
	140.	F_{66}	0.0	F_{7776}	-0.1	F_{8841}	-0.30	F_{9752}	05	F_{9955}	-0.2		. 0		-0.02	$F_{\text {zy } 44}$	-0.07	$F_{\text {zz98 }}$	-0.03
F_{5111}	0.01	F_{6642}	-0	F_{7777}	-0.05	F_{8842}	. 0	F_{9753}	0.04		-0.3		-0.01		0.1		0.01	$F_{z z 99}$	-0.24
F_{5211}	0.01	F_{6643}	-0.4	F_{8611}	0.05	F_{8843}	-0.2	F_{9754}	-0.02		-0.09		0.00		-0.15	$F_{\text {zy } 52}$	0.01	$F_{z z x x}$	-0.19
F_{522}	0.01	F_{66}	-0.69	F_{8621}	-0.01	F_{8844}	-0.91	F_{9755}	0.01	F_{9977}	0.04		-0.12		-0.13	$F_{\text {zy } 53}$	-0.01	$F_{\text {zzyx }}$	0.03
F_{5222}	0.11	F_{6651}	0.00	F_{8622}	0.09	F_{8851}	-0.01	F_{9766}	0.06	F_{9986}	0.03		-0.23	$F_{\text {yyxx }}$	-0.16	$F_{\text {zy } 54}$	-0.03	$F_{\text {zzyy }}$	-0.20
F_{5}	-0.03	F_{6652}	-0.19	F_{8631}	0.00	F_{8852}	0.01	F_{9776}	-0.11	F_{9987}	-0.01	$F_{y \times 51}$	-0.11	$F_{\text {yyyx }}$	-0.01	$\mathrm{F}_{\text {zy5 }}$	0.01	$F_{\text {zzzx }}$	-0.07
F_{5321}	0.01	F_{6653}	0.02	F_{8632}	-0.01	F_{8853}	0.09	F_{9777}	0.21	F_{9988}	-0.27	$F_{y \times 52}$	0.00	$F_{\text {yyyy }}$	-0.37	$F_{\text {zy } 66}$	0.00	$F_{\text {zzzy }}$	0.03
F_{532}	0.04	F_{66}	-0.16	F_{86}	0.13	F_{8854}	0.02	F_{98}	0.00	F_{99}	0.27	$F_{y \times 53}$	-0.26	$F_{\text {zx1 }}$	-0.03	$F_{\text {zy }}$	-0.01	$\mathrm{F}_{\text {zz }}$	0.91

${ }^{a}$ See text for more details. Units of force constants are $\mathrm{mdyn} / \AA^{n} \cdot \operatorname{rad}^{m}$ appropriate for an energy unit of mdyn $\cdot \AA(1 \mathrm{mdyn} \cdot \AA \equiv 1 \mathrm{aJ}) \cdot \mathrm{x}, \mathrm{y}$, and z represent the 10th, 11th, and 12 th internal coordinates, respectively.

Agreement between our best VCI 5MR fundamental vibrational frequencies and those obtained by Botschwina and Oswald ${ }^{8}$ using the $\operatorname{CCSD}\left(\mathrm{T}^{*}\right) \mathrm{F}-12 \mathrm{a} / \mathrm{VTZ}-\mathrm{F} 12$ level of theory is modest. The largest differences occur for $v_{1}\left(15 \mathrm{~cm}^{-1}\right)$ and $v_{4}\left(27 \mathrm{~cm}^{-1}\right)$. There are many possible sources for these differences, with the most significant probably being the use of an approximate (T) contribution by Botschwina and Oswald, their neglect of core correlation, and their neglect of most coupling to non-totally-symmetric vibrational degrees of freedom in solving the variational nuclear Schrödinger equation.

Comparison of our best VCI 5MR results with the experiments of Ricks et al. ${ }^{5}$ shows reasonable agreement for most of
the assignments with a few exceptions. Our best value for v_{1} agrees very well, confirming the conclusion by Botschwina and Oswald ${ }^{9}$ that the $3238 \mathrm{~cm}^{-1}$ band observed by Ricks et al. is essentially a free acetylenic $\mathrm{C}-\mathrm{H}$ stretch. The agreement for v_{2}, v_{3}, and v_{4} is also very good, with differences all less than about $10 \mathrm{~cm}^{-1}$. Agreement for the overtone band $2 v_{4}$ is reasonable, being about twice the difference for the v_{4} fundamental, and agreement for ν_{6} is also reasonable, as the assignment by Ricks et al. falls between the two components of the Fermi type 2 resonance between v_{6} and $v_{3}+v_{7}$. Agreement for v_{5}, v_{10}, and the combination band $v_{12}+v_{4}$ is more modest, however. Botschwina and Oswald ${ }^{8}$ have
already questioned the reliability of the assignment for the totally symmetric mode ν_{5}. Given that the lowest energy structure found for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. Ar has the Ar atom out of plane and over the $\mathrm{C}-\mathrm{C}$ single bond, and that this structure is quite a bit lower in energy than the other minima, ${ }^{9}$ it seems plausible that the $\mathrm{C}-\mathrm{C}$ single bond stretch ν_{5} would be significantly impacted in the complex. This same reasoning could be applied to v_{10}, which is described as a CH_{2} out-of plane wag, and to the combination band $v_{12}+v_{4}$ since v_{12} is an outof plane bending mode that involves the CCC backbone. Thus, the discrepancies found between the assignments of Ricks et al. ${ }^{5}$ and our VCI 5MR results can reasonably be attributed to shifts in the vibrational frequencies as a result of complexation for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$.

For l- $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, the effects of scalar relativistic corrections are small: $\sim-5 \times 10^{-5}$ Å on the $\mathrm{C}-\mathrm{H}$ bond lengths and $\sim-3 \times 10^{-4} \AA$ on the CC bonds, $\leq 0.4 \mathrm{~cm}^{-1}$ on harmonic frequencies, and -6 to $0 \mathrm{~cm}^{-1}$ for the vibrational fundamentals. As expected from previous experience, core-correlation effects are much larger on the geometry $\left(-1.3 \times 10^{-3} \AA\right.$ for the CH bonds and $-3 \times 10^{-3} \AA$ for the CC bonds) and harmonic frequencies (+2 to $+7 \mathrm{~cm}^{-1}$) but only slightly larger for the fundamentals $\left(+2\right.$ to $+8 \mathrm{~cm}^{-1}$, except $+10.7 \mathrm{~cm}^{-1}$ for v_{10}). For $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, the effects of scalar relativity corrections are smaller than found for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$: $-2.1 \times 10^{-4} \AA$ for $R_{\mathrm{CC}},-5.5 \times 10^{-5} \AA$ for $r_{\mathrm{CH}}, 0.0-0.5 \mathrm{~cm}^{-1}$ for harmonic frequencies, and -1 to $+2 \mathrm{~cm}^{-1}$ for fundamentals (except $+8 \mathrm{~cm}^{-1}$ for v_{3}). However, core-correlation effects are larger: $5.4 \times 10^{-3} \AA$ for $R_{\mathrm{CC}},-1.4 \times 10^{-3} \AA$ for $r_{\mathrm{CH}}+2$ to $+7 \mathrm{~cm}^{-1}$ for harmonic frequencies, and +3 to $+9 \mathrm{~cm}^{-1}$ for fundamentals (except $+0.3 \mathrm{~cm}^{-1}$ for v_{6}). More details are available upon request.

Given the levels of theory used in the present study, the spectroscopic constants presented for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$in Tables 7 and 8 should be highly accurate, and it is hoped that these will be useful in the future assignment of high-resolution rovibrational spectra from either laboratory experiments or astronomical observations.
C. Quartic Force Fields. For completeness, the best QFFs computed in this work are given in Tables 9 through 12. Specifically, Table 9 contains the quadratic and cubic force constants and Table 10 the quartic force constants for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. Table 11 contains the quadratic and cubic force constants and Table 12 the quartic force constants for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$. These are given in symmetry internal coordinates, and symmetry relationships between the force constants are given in the tables. The force constants presented are based on the following quartic expansion:

$$
V=\frac{1}{2} \sum_{i, j} F_{i j} \Delta_{i} \Delta_{j}+\frac{1}{6} \sum_{i, j, k} F_{i j k} \Delta_{i} \Delta_{j} \Delta_{k}+\frac{1}{24} \sum_{i, j, k, l} F_{i j k} \Delta_{i} \Delta_{j} \Delta_{k} \Delta_{l}
$$

where the summations are unrestricted. We note that, for the force constant labels for $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, we have labeled modes 10,11 , and 12 as x, y, and z, respectively, in order to avoid confusion. So, for example, the diagonal quadratic force constant for mode 10 is given as F_{xx}.

4. CONCLUSIONS

Accurate $\operatorname{CCSD}(\mathrm{T})$ QFFs have been computed for the $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$molecular cations. Extrapolation to the one-particle basis set limit has been included as well as corrections for scalar relativity and core correlation. Anharmonic spectroscopic constants have been determined from secondorder perturbation theory, and fundamental vibrational frequencies have been evaluated from second-order perturbation theory
and from variational calculations. Agreement between secondorder perturbation theory and variational CI calculations for the fundamental vibrational frequencies is very good. Agreement between our computed fundamental vibrational frequencies and recent IRPD experiments is good with a few exceptions. The $3182 \mathrm{~cm}^{-1}$ band assigned in one recent IRPD experiment ${ }^{5}$ to v_{4} for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$does not agree well with our calculations, where we obtain $3134.8 \mathrm{~cm}^{-1}$ (VCI 5MR), but our value does agree well with other recent IRPD experiments. ${ }^{2-4}$ We have examined our VCI calculations for possible combination and overtone bands but can find only one band that could be a reasonable match, and this requires three quanta. Hence we conclude that the $3182 \mathrm{~cm}^{-1}$ band may be a combination or overtone band that is perturbed somewhat by the presence of the Ar atom, or it may be due to a different species. For $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, agreement between the IRPD experiments and our variational calculations for the fundamental vibrational frequencies (plus one overtone and one combination band) is reasonable except for v_{5}, v_{10}, and the combination band v_{12} $+v_{4}$. However, a recent ab initio study ${ }^{9}$ that explored the potential energy surface of $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$interacting with an Ar atom shows one minimum quite a bit lower than the others, and this structure would likely exhibit perturbations to v_{5}, v_{10}, and the combination band v_{12} $+v_{4}$, so a plausible explanation for these discrepancies is given.

The fundamental vibrational frequencies and spectroscopic constants presented here for $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$should be the most reliable available for the free gas-phase species, and it is hoped that they will be useful in the assignment of future highresolution laboratory experiments or astronomical observations. Finally, we compute what should be the most reliable energy difference between $\mathrm{c}-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$and $1-\mathrm{C}_{3} \mathrm{H}_{3}{ }^{+}$, obtaining a value of $27.9 \mathrm{kcal} / \mathrm{mol}$ at 0 K .

- AUTHOR INFORMATION

Corresponding Author

*MS 245-1; e-mail Timothy.J.Lee@nasa.gov.

Notes

${ }^{\ddagger}$ MS 245-6; e-mail Xinchuan.Huang-1@nasa.gov.

Notes

"187 Grattan St.; e-mail prtaylor@unimelb.edu.au.

ACKNOWLEDGMENT

We gratefully acknowledge support from the NASA Herschel GO Program, Cycle 0 TR/LA PID 1022, and NASA Grant 08-APRA08-0050. X.H. acknowledges financial support by NASA/ SETI Institute Cooperative Agreement NNX09AI49A. Part of this work was performed when P.R.T. was a visiting professor at the Department of Chemistry, University of Copenhagen, and the hospitality of Professor Kurt Mikkelsen and the theoretical chemistry group is gratefully acknowledged.

- REFERENCES

(1) Burgess, P. C.; Holmes, J. L.; Mommers, A. A.; Szulejko, J. E. J. Am. Chem. Soc. 1984, 106, 521.
(2) Dopfer, O.; Roth, D.; Maier, J. P. J. Am. Chem. Soc. 2002, 124, 494.
(3) Dopfer, O.; Roth, D.; Maier, J. P. Int. J. Mass Spectrom. 2002, 218, 281.
(4) Roth, D.; Dopfer, O.; Roth, D. Phys. Chem. Chem. Phys. 2002, 4, 4855.
(5) Ricks, A. M.; Douberly, G. E.; Schleyer, P. v. R.; Duncan, M. A. J. Chem. Phys. 2010, 132, No. 051101.
(6) Lee, T. J.; Willetts, A.; Gaw, J. F.; Handy, N. C. J. Chem. Phys. 1989, 90, 4330.
(7) Xie, Y.; Boggs, J. E. J. Chem. Phys. 1989, 90, 4320.
(8) Botschwina, P.; Oswald, R. Chem. Phys. 2010, 378, 4.
(9) Botschwina, P.; Oswald, R. J. Chem. Phys. 2011, 134, No. 044305.
(10) Thaddeus, P.; Vrtilek, J. M.; Gottlieb, C. A. Astrophys. J. 1985, 299, L63.
(11) Bell, M. B.; Feldman, P. A.; Matthews, H. E.; Avery, L. W. Astrophys. J. 1986, 311, 1989.
(12) Oike, T.; Kawaguchi, K.; Takano, S.; Nakai, N. Pub. Astron. Soc. Japan 2004, 56, 4310.
(13) Kamata, H.; Yamamoto, S.; Saito, S. Chem. Phys. Lett. 1987, 140, 221 and references therein.
(14) Smith., D. Chem. Rev. 1992, 92, 1473.
(15) Breslow, R.; Groves, J. T. J. Am. Chem. Soc. 1970, 92, 984.
(16) (a) Wyss., M.; Riaplov, E.; Maier, J. P. J. Chem. Phys. 2001, 114, 10355. (b) Craig, N. C.; Pranata, J.; Reinganum, S. J.; Sprague, J. R.; Stevens, P. S. J. Am. Chem. Soc. 1986, 108, 4378.
(17) Mills, I. M. In Molecular Spectroscopy - Modern Research; Rao, K. N., Mathews, C. W., Eds.; Academic Press, New York, 1972)\.
(18) Papousek, D.; Aliev, M. R. Molecular Vibrational-Rotational Spectra; Elsevier: Amsterdam, 1982.
(19) Watson, J. K. G. In Vibrational Spectra and Structure; Durig, J. R., Ed.; Elsevier: Amsterdam, 1977; Vol. 6, pp 1-89.
(20) Gaw, J. F.; Willets, A.; Green, W. H.; Handy, N. C.SPECTRO program, version 3.0, 1996.
(21) Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, No. 221106.
(22) Knizia, G.; Adler, T. B.; Werner, H.-J. J. Chem. Phys. 2009, 130, No. 054104.
(23) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
(24) Martin, J. M. L.; Lee, T. J. Chem. Phys. Lett. 1992, 200, 502.
(25) Wong, A. T.; Bacskay, G. B. Mol. Phys. 1993, 79, 819.
(26) Martin, J. M. L.; Lee, T. J.; Taylor, P. R. J. Chem. Phys. 1998, 108, 676.
(27) Martin, J. M. L.; Lee, T. J.; Taylor, P. R.; Francios, J.-P. J. Chem. Phys. 1995, 103, 2589.
(28) Lee, T. J.; Dateo, C. E. Spectrochim. Acta 1999, 55A, 739.
(29) Cernicharo, J.; Guelin, M.; Agundez, M.; McCarthy, M. C.; Thaddeus, P. Astrophys. J. 2008, 688, L83.
(30) Aoki, K. Chem. Phys. Lett. 2000, 323, 55.
(31) Botschwina, P.; Oswald, R. J. Chem. Phys. 2008, 129, 044305.
(32) Huang, X.; Lee, T. J. Astrophys. J. 2011to be submitted for publication.
(33) Huang, X.; Lee, T. J. J. Chem. Phys. 2008, 129, No. 044312.
(34) Huang, X.; Lee, T. J. J. Chem. Phys. 2009, 131, No. 104301.
(35) Martin, J. M. L.; Lee, T. J. Chem. Phys. Lett. 1996, 258, 136.
(36) (a) Douglas, M.; Kroll, N. M. Ann. Phys. 1974, 82, 89; (b) Hess, B. A. Phys. Rev. A 1985, 32, 756; (c) 1986, 33, 3742.
(37) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(38) Martin, J. M. L.; Taylor, P. R. Chem. Phys. Lett. 1994, 225, 473.
(39) Huang, X.; Valeev, E. F.; Lee, T. J. J. Chem. Phys. 2010, 133, No. 244108.
(40) Lee, T. J.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 1987, 87, 7062.
(41) Simandiras, E. D.; Rice, J. E.; Lee, T. J.; Amos, R. D.; Handy, N. C. J. Chem. Phys. 1988, 88, 3187.
(42) Martin, J. M. L.; Taylor, P. R.; Lee, T. J. Chem. Phys. Lett. 1997, 275, 414.
(43) Moran, D.; Simmonett, A. C.; Leach, F. E.; Allen, W. D.; Schleyer, P. v. R.; Schaefer, H. F. J. Am. Chem. Soc. 2006, 128, 9342.
(44) Lee, T. J.; Huang, X.; Dateo, C. E. Mol. Phys. 2009, 107, 1139.
(45) Werner, H.-J., MOLPRO, version 2006.1, a package of ab initio programs; 2006; see http://www.molpro.net.
(46) INTDER 2005 is a general program written by W. D. Allen and co-workers, which performs vibrational analysis and higher-order nonlinear transformations, 2005.
(47) (a) Carter, S.; Bowman, J. M.; Handy, N. C. Theor. Chem. Acc. 1998, 100, 191. (b) Bowman, J. M.; Carter, S.; Huang, X. Int. Rev. Phys. Chem. 2003, 22, 533.
(48) Meyer, W.; Botschwina, P.; Burton, P. J. Chem. Phys. 1986, 84, 891.
(49) Carter, S.; Handy, N. C. J. Chem. Phys. 1987, 87, 4294.
(50) Dateo, C. E.; Lee, T. J.; Schwenke, D. W. J. Chem. Phys. 1994, 101, 5853.
(51) Truhlar, D. G.; Isaacson, A. D. J. Chem. Phys. 1991, 94, 357 and references therein.

[^0]: Received: March 1, 2011
 Revised: April 2, 2011

[^1]: ${ }^{a}$ See text for more details. Units of force constants are mdyn $/ \AA^{n} \cdot \mathrm{rad}^{m}$ appropriate for an energy unit of mdyn $\cdot \AA(1 \mathrm{mdyn} \cdot \AA \equiv 1 \mathrm{aJ})$.

