From NMR spectra to structures

» find conditions under which the protein does not aggregate
is resonably stable

* measure nmr spectra

+ sequence-specific sequential resonance assignment

+ identify spin systems

* link spin systems (sequential assignment)

+ (stereospecific assignment of diasterotopic protons)
+ fully- interpret NOESY spectrum

» convert NOESY peak amplitudes into distances

» calculate 3D structure and refine the output



Chemical shifts (frequencies) and line
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NOE information is used to introduce
distance restraints into the structure
calculations
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From distances to 3D structures (II)

» Restrained molecular dynamics:
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The origin of the NOE is dipolar
(through-space) coupling of protons



During the structure calculation only rotations about dihedrals
are made
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Protein sequence
Chemical shift list

Positions and volumes
of NOESY cross peaks

Y

Find new

/ assignments\

Evaluate Structure
assignments calculation

"

NOESY assignments
3D structures

Giintert, Quarterly Reviews of Biophysics [2][2]31 (1998), 145-



Automated calculation of NMR structures

Chemical shift Network- Consistency with
agreement Anchoring preliminary structure
A
Peak at

Aldyg (e4,002)

S =24 Atom A

Atom B
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Giintert, Quarterly Reviews of Biophysics [2][2]31 (1998), 145-
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Methods for assigning
larger proteins



15N,IH HSQC spectra are fingerprints of proteins

1H Frequencies

15N Frequencies




15N spectra of proteins: Sidechain peaks
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Sequence-specific resonance assignment
in 13¢, 19N labelled proteins
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>»>Use of 3-dimensional (tripleresonance) experiments




Backbone Assignment - 3D Experiments

HNCACB /
HN(CO)CACB

HNCO /
HN(CA)CO

HN(CACO)NH

15N
NOESY

residue i-1i residuei i residue i+l



Backbone Assignment - 3D Experiments
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Backbone Assignment - 3D Experiments
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sequential assignment strategy: building of fragments

1. picking of HN-C peaks -> spin systems (numbers 1-125)
2. alignment of 13C dimension for linking of correct successors/ predecessors
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3. try to match fragments on amino acid sequence




view of the 3D spectrum in CARA




2D 'H-1°N HSQC is the root experiment of most of the
standard triple-resonance (H, 13C, >'N) NMR experiments used
for backbone assignment.

All the 3D triple resonance experiments are related by the
common !H, N chemical shifts of the HSQC spectra: AMIDE
STRIP
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Backbone Assignment - 3D Experiments

HNCACB /
HN(CO)CACB

HNCO /
HN(CA)CO
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Standard Carbon Chemical shifts
Biological Magnetic Resonance Databank (Diamagnetic Shifts - 03/09/2007)
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Standard Carbon Chemical shifts
Biological Magnetic Resonance Databank (Diamagnetic Shifts - 03/09/2007)
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Identifying Residue type from chemical shifts
Can easily identify 6ly, Ser/Thr and Ala from CB,CA shifts: Gly Ca ~45

pPpm.
. Ala CB chemical shifts is around ~18 ppm.
Can group Leu, Tyr, Phe, Asn, Ile and Asp based on their CB shifts ~> 35

ppm.

Differentiate between the residues having two (Asp, Asn, Trp, Tyr, Cys,
His, Phe) carbons sidechains and those having 3 or more carbons in the
sidechain by using CC(CO)NH.

Among the residues having three carbon sidechain: Val, Met, Thr, Glu and
6In, Val has most upfield Cg chemical shifts. Ser/Thr can be distinguished
Cg shift. Glu and Gln can be identified by their Cg shifts, Glu Cy > 35 ppm
and Gln Cy < 35 ppm.

Residues with four carbons sidechain: Pro and Arg can easily be
distinguished by their Cd shifts, for Pro Cd ~ 50 ppm whereas for Arg Cd
~43 ppm.

Among the residues having five carbons side chain: Leu, Lys and Ile. Ile
has the most upfield €3 shifts ~10 ppm whereas Leu has Cf ~ 43 ppm and
Lys will have Ce¢ ~43 ppm.
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Standard Proton Chemical shifts
Biological Magnetic Resonance Databank (Diamagnetic Shifts - 03/09/2007)
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Side Chain Assignment Strategies

Identification of backbone protons:
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13C dimension strips of single spin systems for linking
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Prediction of secondary structure using
chemical shifts using TALOS
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The magnitude of the H{®N}-NOE depends on
the motional properties

15y {IH}
-NOE

Correlation time




NMR of metallothioneins



Metallothioneins

Small proteins: ~60 aa with ~30% cysteine residues
Coordinate metal ions
No secondary structure elements

Two metal-thiolate clusters per protein:

a-domain: 11 Cys coordinating 4 divalent metal ions

B-domain: 9 Cys coordinating 3 divalent metal ions

Crystal structure of MT-2 isolated from rat liver. (Romero-Isart N, Vasdk M. J Inorg Biochem. Feb 2002)
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.~ Structures of Littorina littorea MT
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