

From NMR spectra to structures

- find conditions under which the protein does not aggregate
is reasonably stable
- measure nmr spectra
- sequence-specific sequential resonance assignment
- identify spin systems
- link spin systems (sequential assignment)
- (stereospecific assignment of diasterotopic protons)
- fully- interpret NOESY spectrum
- convert NOESY peak amplitudes into distances
- calculate 3D structure and refine the output

Chemical shifts (frequencies) and line intensities

NOE information is used to introduce distance restraints into the structure calculations

"NOEs"

$$\text{NOE} \sim B_{\text{loc}}^2$$

$$B_{\text{loc}} \sim \frac{\gamma_I \gamma_S (3 \cos^2 \phi - 1)}{r^3}$$

From distances to 3D structures (II)

- Restrained molecular dynamics:

$$F = m \frac{\partial^2 r}{\partial t^2} \quad F = \frac{\partial U_{\text{pot}}}{\partial r}$$

$$U_{\text{pot}} = U_{\text{bond}} + U_{\text{angle}} + U_{\text{dihedral}} + U_{\text{chiral}} + U_{\text{v.d.Waals}} + U_{\text{coulomb}} + U_{\text{NMR}}$$

$$U_{\text{NMR}} = U_{\text{NOE}} + U_J + \dots$$

The origin of the NOE is dipolar (through-space) coupling of protons

$$B_{\text{loc}} \sim \frac{\gamma_I \gamma_S (3 \cos^2 \phi - 1)}{r^3}$$

$$R2, R1 \sim B_{\text{loc}}^2$$

During the structure calculation only rotations about dihedrals are made

Automated calculation of NMR structures

Chemical shift agreement

$$|\omega_1 - \omega_A| < \Delta\omega_{\text{tol}}$$

$$|\omega_2 - \omega_B| < \Delta\omega_{\text{tol}}$$

(a)

Network-Anchoring

(b)

Consistency with preliminary structure

(c)

Methods for assigning larger proteins

$^{15}\text{N}, ^1\text{H}$ HSQC spectra are fingerprints of proteins

^{15}N spectra of proteins: Sidechain peaks

Sequence-specific resonance assignment in $^{13}\text{C},^{15}\text{N}$ labelled proteins

>>Use of 3-dimensional (tripleresonance) experiments

Backbone Assignment - 3D Experiments

Backbone Assignment - 3D Experiments

Backbone Assignment - 3D Experiments

sequential assignment strategy: building of fragments

1. picking of HN-C peaks -> spin systems (numbers 1-125)
2. alignment of ^{13}C dimension for linking of correct successors/ predecessors

CACB / COCACB

CG / COCG

NN

3. try to match fragments on amino acid sequence

view of the 3D spectrum in CARA

2D ^1H - ^{15}N HSQC is the root experiment of most of the standard *triple-resonance* (^1H , ^{13}C , ^{15}N) NMR experiments used for backbone assignment.

All the 3D triple resonance experiments are related by the common ^1H , ^{15}N chemical shifts of the HSQC spectra: **AMIDE STRIP**

3D cube

HN
15N 2D plane

amide strip
Characteristic NH
and N15 chemical
shifts

Cursor: x: HN=7.560 y: N=117.415 z: Cab=59.028 Level: +66445. Selected 1 peaks: 107:H/109:CA-1 22

Backbone Assignment - 3D Experiments

Standard Carbon Chemical shifts

Biological Magnetic Resonance Databank (Diamagnetic Shifts - 03/09/2007)

http://www.bmrb.wisc.edu/ref_info/statful.htm

- $C\alpha$
- $C\beta$
- $C\gamma$
- $C\delta$
- $C\epsilon$

Standard Carbon Chemical shifts

Biological Magnetic Resonance Databank (Diamagnetic Shifts - 03/09/2007)

Identifying Residue type from chemical shifts

Can easily identify Gly, Ser/Thr and Ala from CB,CA shifts: Gly $C\alpha$ ~45 ppm; Ser and Thr can be distinguished by $C\beta$ shifts: Thr $C\beta$ ~70 ppm ; Ser $C\beta$ ~ 63 ppm. Ala $C\beta$ chemical shifts is around ~18 ppm.

Can group Leu, Tyr, Phe, Asn, Ile and Asp based on their $C\beta$ shifts ~> 35 ppm.

Differentiate between the residues having **two** (Asp, Asn, Trp, Tyr, Cys, His, Phe) carbons sidechains and those having 3 or more carbons in the sidechain by using $CC(CO)NH$.

Among the residues having **three** carbon sidechain: Val, Met, Thr, Glu and Gln, Val has most upfield $C\gamma$ chemical shifts. Ser/Thr can be distinguished $C\gamma$ shift. Glu and Gln can be identified by their $C\gamma$ shifts, Glu $C\gamma$ > 35 ppm and Gln $C\gamma$ < 35 ppm.

Residues with **four** carbons sidechain: Pro and Arg can easily be distinguished by their $C\delta$ shifts, for Pro $C\delta$ ~ 50 ppm whereas for Arg $C\delta$ ~43 ppm.

Among the residues having **five** carbons side chain: Leu, Lys and Ile. Ile has the most upfield $C\delta$ shifts ~10 ppm whereas Leu has $C\beta$ ~ 43 ppm and Lys will have $C\epsilon$ ~43 ppm.

Standard Proton Chemical shifts

Biological Magnetic Resonance Databank (Diamagnetic Shifts - 03/09/2007)

Side Chain Assignment Strategies

Identification of backbone protons:

Side chain assignment:

residue $i-1$

residue i

¹³C dimension strips of single spin systems for linking

Prediction of secondary structure using chemical shifts using TALOS

The magnitude of the ${}^1\text{H}\{{}^{15}\text{N}\}$ -NOE depends on the motional properties

NMR of metallothioneins

Metallothioneins

- Small proteins: ~60 aa with ~30% cysteine residues
- Coordinate metal ions
- No secondary structure elements
- Two metal-thiolate clusters per protein:
 - α -domain: 11 Cys coordinating 4 divalent metal ions
 - β -domain: 9 Cys coordinating 3 divalent metal ions

Crystal structure of MT-2 isolated from rat liver. (Romero-Isart N, Vasák M. *J Inorg Biochem*. Feb 2002)

B

C-terminus

C-terminus

N-terminus

Structures of *Littorina littorea* MT

N-term

center

C-term

center and C-term