

Structural diversity among some dialkyltin(IV) benzoate and related derivatives

Anthony Linden and Tushar S. Basu Baul

Acta Cryst. (2021). C77, 209–220

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright © International Union of Crystallography

Author(s) of this article may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see https://journals.iucr.org/services/authorrights.html

Received 13 March 2021 Accepted 1 April 2021

Edited by A. G. Oliver, University of Notre Dame, USA

Keywords: diorganotin(IV) carboxylate complexes; dibutyltin(IV) complexes; dibenzyltin(IV) complexes; tin(IV) complexes; hydrogen bonding; π - π stacking; crystal structure.

CCDC references: 2074914; 2074913; 2074912; 2074911; 2074910

Supporting information: this article has supporting information at journals.iucr.org/c

Acta Cryst. (2021). C77, 209-220

Structural diversity among some dialkyltin(IV) benzoate and related derivatives

Anthony Linden^a* and Tushar S. Basu Baul^b*

^aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, and ^bCentre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India. *Correspondence e-mail: anthony.linden@chem.uzh.ch, basubaulchem@gmail.com

The molecular structures of five diorganotin(IV) carboxylates, (I)-(V), can be categorized into two main well-known structural types for such Sn complexes. One is the mononuclear dialkytin(IV) carboxylates with an $[R_2Sn(LH)_2]$ -type skew-trapezoidal bipyramid, where the alkyl ligands are in pseudo-axial positions and the O atoms from two asymmetrically coordinated bidentate carboxylate ligands are in the equatorial plane. This structure type is adopted by dibutylbis{(E)-2-hydroxy-5-[(3-methylphenyl)diazenyl]benzoato}tin(IV) cyclohexane hemisolvate, $[Sn(C_4H_9)_2(C_{14}H_{11}N_2O_3)_2] \cdot 0.5C_6H_{12}$, (I), dibenzylbis{(E)- $5-[(4-bromophenyl)diazenyl]-2-hydroxybenzoato}tin(IV), [Sn(C_7H_7)_2(C_{13}H_8Br N_2O_3$, [II], and aquadibenzylbis(4-{(E)-[(Z)-4-hydroxypent-3-en-2-ylidene]amino}benzoato)tin(IV) benzene disolvate, [Sn(C₇H₇)₂(C₁₂H₁₂NO₃)₂(H₂O)]- $2C_6H_6$, (III), although the latter has an additional water ligand to give a distorted pentagonal bipyramidal coordination geometry in which the carboxylate groups are more symmetrically coordinated to the Sn atom than in (I) and (II). The other structure motif is that of the tetranuclear bis(dicarboxylatotetraorganodistannoxanes), $\{[R_2Sn(LH)]_2O\}_2$, which contain an Sn_4O_2 core decorated with four bridging carboxylate ligands, plus two alkyl ligands at each Sn^{IV} centre. The complexes octabutyltetrakis{ μ -(E)-4-[(4-hydroxy-3,5-dimethylphenyl)diazenyl]benzoato $di-\mu_3$ -oxido-tetratin(IV) ethanol disolvate, $[Sn_4(C_4H_9)_8(C_{15}H_{13}N_2O_3)_4O_2] \cdot 2C_2H_6O_1$ (IV), and octabutyltetrakis{(E)-3-[(2hydroxybenzylidene)amino]propanoato}di- μ_3 -oxido-tetratin(IV), [Sn₄(C₄H₉)₈- $(C_{10}H_{10}NO_3)_4O_2]$, (V), display this motif. The structures obtained correlate with the 1:1 and 1:2 stoichiometric ratios of the dialkyltin(IV) and carboxylic acid starting materials in the syntheses. The supramolecular structures arising from consideration of secondary Sn...O interactions and/or classic hydrogen bonds include discrete molecules for (V), centrosymmetric dimers for (I), extended chains for (II) and (III), and sheets for (IV).

1. Introduction

The structures of organotin(IV) carboxylates are reported frequently and their diverse characteristics include a variety of tin coordination geometries, which manifest themselves in monomeric or discrete *n*-meric species with *n* up to 6, and polymeric extended structures, as well as discrete monomeric, but polynuclear, species (Tiekink, 1991, 1994; Chandrasekhar et al., 2002; Prabusankar & Murugavel, 2004). The range of observed organotin(IV) carboxylate structures has been attributed to the influence of ligand size, shape, steric restrictions, electronic properties, and even to the stoichiometries of the reactants (Buntine et al., 1998; Willem et al., 1998; Dakternieks et al., 2003; Prabusankar & Murugavel, 2004). Some organotin(IV) carboxylates have useful biological properties and, in particular, the cytotoxic potential of triorganotin(IV) and diorganotin(IV) carboxylates has been investigated (Gielen & Tiekink, 2005; Hussain et al., 2015;

research papers

Basu Baul, Kehie et al., 2017). A common coordination geometry found for mononuclear dialkytin(IV) carboxylates and, in particular, the subset of benzoates, is the $[R_2Sn(LH)_2]$ (R = alkyl or aryl; L = carboxylate ligand) type skew-trapezoidal bipyramid, with the R ligands in pseudo-axial positions and the O atoms from two asymmetrically coordinated bidentate carboxylate ligands in the equatorial plane (Tiekink, 1991, 1994; Basu Baul et al., 2004; Hussain et al., 2015). A second motif is that of the tetranuclear bis(dicarboxylatotetraorganodistannoxanes), $\{[R_2Sn(LH)]_2O\}_2$, which contain an Sn₄O₂ core decorated with four bridging carboxylate ligands, plus two alkyl ligands at each Sn centre (Basu Baul et al., 2006; Basu Baul, Dutta et al., 2017; Debnath et al., 2020). Here we report the molecular and supramolecular structures of five new diorganotin(IV) carboxylates, (I)-(V) (see Scheme 1), which generally fit into one or the other of the above two types, and correlate the structures obtained with the stoichiometry of the reactants. Complexes (I) and (II) are of the $[R_2Sn(LH)_2]$ type (R = ^{*n*}Bu or Bz), (III) is the similar $[Bz_2Sn(LH)_2(H_2O)]$, while (IV) and (V) are of the $\{[^nBu_2Sn (LH)]_{2}O\}_{2}$ type.

2. Experimental

2.1. Synthesis and crystallization

Dibutyltin(IV) complex (I) was prepared by the reaction of (E)-2-hydroxy-5-[(3-methylphenyl)diazenyl]benzoic acid and di-*n*-butyltin(IV) oxide (2:1) in anhydrous benzene under reflux conditions for 8 h. The clear solution was filtered and evaporated to dryness. The dry mass was extracted in a cyclohexane/petroleum ether (60–80 °C) mixture (1:1 ν/ν), which, upon slow evaporation, yielded a crystalline material with a yield of 73%. Orange single crystals of the compound were obtained from repeated crystallization from petroleum ether (m.p. 393–394 K). Elemental analysis calculated (%) for C₃₉H₄₆N₄O₆Sn: C 59.63, H 5.90, N 7.13; found: C 59.32, H 5.98, N 7.50.

Dibenzyltin(IV) compound (II) was prepared by the reaction of (*E*)-5-[(4-bromophenyl)diazenyl]-2-hydroxybenzoic acid with dibenzyltin(IV) oxide (2:1) in anhydrous toluene under reflux for 6 h using a Dean–Stark water separator and a water-cooled condenser. The orange-coloured reaction mixture was filtered, concentrated to a minimum volume, precipitated with hexane and filtered again. The residue was dissolved in benzene, which, upon slow evaporation, yielded orange crystals (yield 58%; m.p. 448–449 K). Elemental analysis calculated (%) for $C_{40}H_{30}Br_2N_4O_6Sn$: C 51.04, H 3.21, N 5.95; found: C 51.44, H 2.98, N 6.32.

Dibenzyltin(IV) complex (III) was prepared by the reaction of $4-\{(E)-[(Z)-4-hydroxypent-3-en-2-ylidene]amino\}$ benzoic acid and dibenzyltin(IV) dichloride (2:1) in anhydrous benzene. The reaction mixture was refluxed for 1 h; triethylamine (2 mol) was then added dropwise and reflux was continued for an additional 3 h. The reaction mixture was cooled to room temperature and filtered in order to remove triethylammonium chloride. The filtrate was evaporated and the residue dried *in vacuo*. The residue was extracted into benzene and filtered to remove any suspended particles. The filtrate was concentrated and allowed to evaporate slowly at room temperature until the solid material precipitated. The solid material was filtered off, dried *in vacuo* and then recrystallized from benzene, which, upon slow evaporation, afforded colourless crystals (yield 56%; m.p. 359–361 K).

Tetranuclear Sn complex (IV) was prepared by refluxing equimolar amounts of di-*n*-butyltin(IV) oxide and (E)-4-[(4hydroxy-3,5-dimethylphenyl)diazenyl]benzoic acid in anhydrous toluene for 8 h in a flask equipped with a Dean–Stark water separator and a water-cooled condenser. The clear reaction mixture was filtered and the filtrate was evaporated to dryness. The dried mass was washed with hot hexane and the residue was dissolved in toluene and filtered while hot. A few drops of ethanol were added to facilitate clarification of the

Table 1

Experimental details.

Experiments were carried out at 160 K with Mo $K\alpha$ radiation using a Nonius KappaCCD area-detector diffractometer. Absorption was corrected for by multi-scan methods (*SORTAV*; Blessing, 1995).

	(I)		(II)	(III)	
Crystal data					
Chemical formula	$[Sn(C_4H_9)_2(C_{14}H_{12})_$	$H_{11}N_2O_3)_2].0.5C_{6-}$	$[Sn(C_7H_7)_2(C_{13}H_8BrN_2O_3)_2]$	$[Sn(C_7H_7)_2(C_{12}H_{12}NO_3)_2 - (H_2O)]_2C_2H_2$	
М	785 49		941 19	911.62	
Crystal system, space group	Monoclinic, P21	/c	Monoclinic. $P2_1/n$	Monoclinic, C2/c	
a, b, c (Å)	9.4028 (1), 25.17	18 (2), 15.5008 (1)	13.6816 (1), 12.5767 (1), 22.5401 (2)	23.6530 (5), 10.1034 (2), 20.5952 (4)	
α, β, γ (°)	90, 93.3046 (3),	90	90, 107.0174 (6), 90	90, 115.0715 (12), 90	
$V(\dot{A}^3)$	3662.71 (5)		3708.65 (5)	4458.02 (16)	
Ζ	4		4	4	
$\mu \text{ (mm}^{-1})$	0.75		2.90	0.63	
Crystal size (mm)	$0.25 \times 0.17 \times 0$.12	$0.25 \times 0.15 \times 0.10$	$0.25 \times 0.22 \times 0.10$	
Data collection					
T_{\min}, T_{\max}	0.854, 0.917		0.652, 0.843	0.753, 0.943	
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	90950, 10708, 71	.09	107473, 10845, 8598	58583, 6506, 5193	
R _{int}	0.066		0.059	0.101	
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.704		0.704	0.704	
Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.110, 1.0	4	0.032, 0.076, 1.04	0.056, 0.148, 1.05	
No. of reflections	10702		10845	6506	
No. of parameters	623		487	228	
No. of restraints	645		0	2	
H-atom treatment	H atoms treated independent	and constrained	H atoms treated by a mixture of independent and constrained	H atoms treated by a mixture of independent and constrained	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.90, -0.63		0.69, -0.87	1.06, -2.17	
		(IV)		(V)	
Crystal data					
Chemical formula		$[Sn_4(C_4H_9)_8(C_{15}H_9)_8($	$_{13}N_2O_3)_4O_2]\cdot 2C_2H_6O$	$[Sn_4(C_4H_9)_8(C_{10}H_{10}NO_3)_4O_2]$	
M _r		2132.88 Managlinia D2 (a		1/52.41 Triclinic $P\overline{1}$	
c_{rystar} system, space group		Monoclinic, $P2_1/c$ 11 8305 (1) 24 2855 (3) 17 3557 (2)		$\begin{array}{c} \text{Incline, } F \\ 12 0054 (2) & 14 7200 (4) & 22 0122 (6) \end{array}$	
a, b, c (A)		90 93 2962 (7) 90		12.0034(3), 14.7309(4), 23.9132(0) 76 3707(18) 75 5206(16) 88 1600(16)	
$V(\Lambda^3)$		4082 00 (9)		3077 81 (18)	
Z		2		2	
$\mu (mm^{-1})$		1.06		1 30	
Crystal size (mm)		$0.35 \times 0.20 \times 0.15$		$0.25 \times 0.20 \times 0.05$	
Data collection					
T_{\min}, T_{\max}		0.829, 0.922		0.358, 0.537	
No. of measured, independent and obs $2\sigma(I)$] reflections	erved [I >	94026, 11376, 9553	3	68065, 14030, 8004	
R _{int}		0.049		0.107	
$(\sin \theta / \lambda)_{max} (A^{-1})$		0.649		0.596	
Refinement					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$		0.033, 0.077, 1.04		0.046, 0.114, 1.02	
No. of reflections		11371		14030	
No. of parameters		628		859	
No. of restraints		144		0	
H-atom treatment		H atoms treated b and constrained	y a mixture of independent refinement	H-atom parameters constrained	

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXS97 (Sheldrick, 2008), PATTY and DIRDIF94 (Beurskens et al., 1992, 1994), ORTEPII (Johnson, 1976), SHELXL2018 (Sheldrick, 2015), Mercury (Macrae et al., 2020) and PLATON (Spek, 2020).

0.91, -0.93

solution. An orange microcrystalline material was obtained after standing for a week (yield 63%; m.p. 442–443 K). Elemental analysis calculated (%) for $C_{96}H_{136}N_8O_{14}Sn_4$: C 54.47, H 6.48, N 5.29; found: C 54.54, H 6.82, N 5.70.

Tetranuclear Sn complex (V) was synthesized by reacting equimolar amounts of di-*n*-butyltin(IV) dichloride and potassium (E)-3-[(2-hydroxybenzylidene)amino]propanoate, dissolved in anhydrous chloroform and methanol, respectively,

1.20, -1.11

under stirring for 6 h. The reaction mixture was filtered and evaporated to dryness. The dry mass was extracted in chloroform, concentrated and precipitated with hexane. Recrystallization from chloroform/hexane afforded yellow crystals in a yield of 55% (m.p. 644–645 K). Elemental analysis calculated (%) for $C_{72}H_{112}N_4O_{14}Sn_4$: C 49.91, H 6.52, N 3.23; found: C 49.66, H 6.88, N 3.20.

2.2. Refinement

Crystal data, data collection and structure refinement details for (I)-(V) are summarized in Table 1. A correction for secondary extinction was applied only in the case of (II).

The asymmetric unit of (I) contains one molecule of the Sn complex plus one half of a cyclohexane molecule, which sits about a crystallographic centre of inversion. A test refinement of the site-occupation factor of the cyclohexane atoms suggested an occupancy of approximately 86%. Another test refinement, where the SQUEEZE routine (Spek, 2015) of the program PLATON (Spek, 2020) was used to account for the solvent molecule, gave an electron count of 52 e per void, whereas cyclohexane has 48 e. There are no voids in the structure when the solvent molecule is included. These tests suggest that the solvent molecule site is essentially fully occupied. The geometry of the cyclohexane molecule is poor because of possible disorder, as indicated by the enlarged atomic displacement parameters, but attempts to model the disorder did not improve the refinement agreement factors significantly and led to unreasonably short intermolecular contacts. The C-C distances within the solvent molecule were restrained to 1.52 (1) Å, while it was preferred not to restrain the atomic displacement parameters of the cyclohexane atoms.

One of the carboxylate ligands in (I) is disordered in its entirety over two conformations, the difference arising from a reversal of the direction of the zigzag at the N=N bond (Fig. 1). Two positions were defined for all the atoms of this ligand, except for the carboxylate O atom bound strongly with the Sn atom, which is not significantly disordered. Refinement of constrained site-occupation factors for the two orientations yielded a value of 0.563 (5) for the major conformation. Similarity restraints were applied to the chemically equivalent bond lengths and angles of all the atoms in the carboxylate ligands, including those of the ordered ligand. Furthermore, neighbouring atoms within and between each conformation of the disordered ligand were restrained to have similar atomic displacement parameters.

The asymmetric unit of (III) contains one half of a molecule of the Sn complex, which sits across a twofold axis, plus a highly disordered benzene molecule. The disordered solvent molecule could not be modelled adequately, so its contribution to the diffraction data was removed using the SQUEEZE routine of *PLATON*. When the solvent molecule is excluded from the model, there are four cavities of 324 Å³ per unit cell. The total number of electrons contributing to each void was calculated by the SQUEEZE routine to be approximately 85 e. A benzene molecule has 42 e, which suggests that the cavities have two molecules of benzene (one per asymmetric unit) and this approximation was used in the subsequent calculation of the empirical formula, formula weight, density, linear absorption coefficient and F(000). Based on the assumption, the overall ratio of Sn complex molecules to benzene is 1:2.

In (IV), the Sn complex molecule sits across a crystallographic centre of inversion and the asymmetric unit includes a molecule of ethanol. Two butyl ligands at the same Sn atom

Figure 1

The molecular structure of the Sn^{IV} complex molecule of (I), showing the atom-labelling scheme for (*a*) the minor-disorder conformation of the right-hand benzoate ligand and (*b*) the major-disorder conformation. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

are disordered over two conformations. Two sets of positions were defined for the atoms of one methylene group in one butyl ligand and for all the atoms of the other disordered butyl ligand, and the site-occupation factors of the major conformations of these groups refined to 0.846 (6) and 0.683 (5), respectively. Similarity restraints were applied to the chemically equivalent bond lengths and angles involving all disordered C atoms, while neighbouring atoms within and between each conformation of the disordered butyl groups were restrained to have similar atomic displacement parameters. A pseudo-isotropic restraint was also applied to the atomic displacement parameters of atom O2.

The hydroxy, amine and water H atoms, where present in (I)–(IV), were located in a difference Fourier map and their positions were refined along with individual isotropic displacement parameters. The unique O–H distance in the water ligand of (III) was restrained to 0.84 (1) Å. In (V), the hydroxy H atoms were constrained to an ideal geometry (O–H = 0.84 Å), with $U_{iso}(H) = 1.5U_{eq}(O)$, but were allowed to rotate freely about the O–C bonds. For all structures, the methyl H atoms were constrained to an ideal geometry (C–H = 0.98 Å), with $U_{iso}(H) = 1.5U_{eq}(C)$, but were allowed to rotate freely about the C–C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.95 (aromatic, alkene) or 0.99 Å (methylene) and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 2

The tetrameric assembly of the Sn^{IV} complex molecules of (I), showing the secondary Sn···O bonds (blue dashed lines), the O–H···O hydrogen bonds (magenta dashed lines), the head-to-tail overlay of the molecules involved in π - π interactions and the cyclohexane molecules in the cavity between the overlaid pairs of molecules. Only one conformation of the disordered benzoate ligand is included. Most H atoms have been omitted for clarity.

Table 2						
Selected geometric parameters	(Å,	0) for	(I)).	

0	1 ()	, (,	
Sn1-O1	2.0961 (16)	Sn1-C29	2.110 (3)
Sn1-O2	2.6252 (18)	Sn1-C33	2.110 (3)
Sn1-O4	2.0954 (17)	$Sn1-O3^{i}$	3.4786 (17)
Sn1 - O5A	2.81 (3)	N1-N2	1.250 (3)
Sn1-O5 <i>B</i>	2.60 (2)		
O1-Sn1-O2	53.93 (5)	O2-Sn1-C33	87.56 (9)
O1-Sn1-O4	82.76 (6)	O4-Sn1-O5A	53.3 (3)
O1-Sn1-O5A	135.8 (3)	O4-Sn1-O5B	52.9 (2)
O1-Sn1-O5B	135.6 (2)	O4-Sn1-C29	102.85 (9)
O1-Sn1-C29	103.65 (9)	O4-Sn1-C33	105.25 (9)
O1-Sn1-C33	109.89 (9)	O5A-Sn1-C29	91.6 (6)
O2-Sn1-O4	136.44 (6)	O5A-Sn1-C33	81.4 (6)
O2-Sn1-O5A	167.5 (4)	O5B-Sn1-C29	88.7 (5)
O2-Sn1-O5B	169.5 (3)	O5B-Sn1-C33	84.4 (5)
O2-Sn1-C29	92.83 (8)	C29-Sn1-C33	138.31 (10)

Symmetry code: (i) -x + 2, -y + 1, -z.

3. Results and discussion

3.1. Molecular structures and Sn^{IV} coordination motifs

Dibutylbis{(E)-2-hydroxy-5-[(3-methylphenyl)diazenyl]benzoato}tin(IV) cyclohexane hemisolvate, (I), which can be abbreviated as a 3-methylphenylazobenzoate dibutyltin(IV) derivative, is a mononuclear molecule, which crystallizes with the solvent molecule on a crystallographic centre of inversion (Fig. 1). The crystal structure is isostructural with that of the corresponding benzene hemisolvate [compound 3 in Basu Baul et al. (2004)]. Even the ratios of site occupation of the disordered conformations of one carboxylate ligand are similar [0.563 (5) in (I) and 0.579 (5) in the benzene hemisolvate]. The disorder results from a reversal of the direction of the zigzag at the azo bond. Nonetheless, the relative orientation of the two coplanar carboxylate ligands in the Sn complex molecule in both structures is the same, even with regard to the directions of the methyl groups, which both point towards the same side of the molecule, regardless of the direction of the azo zigzag. The geometry of the Sn complex molecule in (I) is the same as that described for the benzene hemisolvate, so will not be elaborated in detail here, other than to remind readers that the coordination geometry at the Sn atom is skew-trapezoidal bipyramidal (Table 2), with asymmetrically coordinated carboxylate groups in the equatorial plane and the n-butyl ligands extending outwards in slightly bent pseudo-axial positions, as observed for many azocarboxylatodialkyltin(IV) complexes of this type (Tiekink, 1991, 1994). The molecules are linked into centrosymmetric dimers by secondary $Sn \cdots O$ interactions of 3.4786 (17) Å involving the hydroxy O atom of a carboxylate ligand of an adjacent molecule (Fig. 2). This arrangement, with a very similar Sn···O distance of 3.439 (2) Å, was also observed in the structure of the benzene hemisolvate. The structure of the 2-methoxyphenyl analogue shows similar secondary interactions, although a significantly shorter $Sn \cdots O$ distance of 3.192 (4) Å is present (Linden et al., 2007).

The structure of the related 4-bromophenylazobenzoate dibutyltin(IV) derivative dibutylbis{(E)-5-[(4-bromophenyl)-diazenyl]-2-hydroxybenzoato}tin(IV) has also been reported

research papers

Table 2

Selected geometric parameters (Å, $^{\circ}$) for (II).						
Sn1-O1	2.1077 (14)	Sn1-C27	2.132 (2)			
Sn1-O2	2.5939 (15)	Sn1-C34	2.130 (2)			
Sn1-O4	2.1100 (14)	Sn1-O3 ⁱ	3.0858 (16)			
Sn1-O5	2.5426 (16)	N1-N2	1.260 (3)			
O1-Sn1-O2 O1-Sn1-O4 O1-Sn1-O5 O1-Sn1-C27	54.69 (5) 81.12 (6) 136.25 (5) 106.31 (8)	O2-Sn1-C34 O4-Sn1-O5 O4-Sn1-C27 O4-Sn1-C34	89.30 (7) 55.27 (5) 106.44 (7) 103.69 (8)			
O1-Sn1-C34	102.97 (7)	O5-Sn1-C27	85.08 (8)			
O2-Sn1-O4	135.78 (5)	O5-Sn1-C34	91.74 (7)			
O2-Sn1-O5 O2-Sn1-C27	168.06 (5) 86.57 (8)	C27-Sn1-C34	140.54 (9)			

Symmetry code: (i) $-x + \frac{5}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

[compound **6** in Basu Baul *et al.* (2004)], but the structure of the corresponding dibenzyltin(IV) derivative, dibenzylbis- $\{(E)-5-[(4-bromophenyl)diazenyl]-2-hydroxybenzoato\}tin(IV),$ (II), is almost unique in that up to now only one other structure of a mononuclear dibenzyltin(IV) derivative with benzoate ligands of any kind has been reported, that being the simple complex bis(4-aminobenzoato)dibenzyltin(IV) (Wang *et al.*, 2005; CSD refcode ACUNIX). Compound (III), described further below, is another new example of a bis(benzoato)dibenzyltin(IV) complex.

In the structure of compound (II), the Sn atom has the usual skew-trapezoidal bipyramidal geometry, with the benzyl ligands in pseudo-axial positions, whereby their phenyl rings fold over and under the carboxylate groups (Fig. 3 and Table 3). Compared with the corresponding dibutyltin(IV) complex, the only significant difference in the geometry of the primary Sn coordination sphere in (II) is a slightly more symmetrical coordination of the carboxylate groups, with the

Figure 3

View of the unique molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

The extended chains of the molecules of (II), showing the secondary $Sn \cdots O$ bonds (blue dashed lines), the $O-H \cdots O$ hydrogen bonds (magenta dashed lines) and the near-overlay of the ring systems of adjacent molecules (such as at the bottom middle of the image). Most H atoms have been omitted for clarity.

longer of the Sn-O distances being about 0.1 Å shorter in (II) than in the dibutyltin(IV) complex. There are no other trends in the geometry of the primary coordination sphere that could be attributed to the replacement of the *n*-butyl ligands with benzyl groups. However, the secondary intermolecular Sn...O contact involving the hydroxy O atom of each carboxylate ligand found in (I) is also present in (II), but is much shorter at 3.0858 (16) Å. In contrast to (I), these interactions do not link the molecules into centrosymmetric dimers, but into extended zigzag chains, which have 2₁-screw symmetry and run parallel to the [010] direction (Fig. 4). Similar chains were also observed for the related phenylazobenzoate dibutyltin(IV) derivative dibutylbis{2-hydroxy-5-[(E)-2-phenyl-1-diazenyl]benzoato{tin(IV) [compound 1 in Basu Baul et al. (2004)]. Therefore, the difference in this regard between the structures of (I) and (II) is unlikely to be caused specifically by the change from *n*-butyl to benzyl ligands. While the benzoate ligands in (I) are quite planar and coplanar with one another, those in (II) are only coplanar for the benzoate sections. The planes of the outer bromophenyl rings are twisted by different amounts relative to their parent benzoate planes; the dihedral angles between these planes are 13.09 (11) and 40.63 (11) $^{\circ}$ for the ligands containing atoms Br1 and Br2, respectively.

Complex (III) crystallized as a benzene disolvate; the asymmetric unit contains a highly disordered molecule of benzene alongside half of a C_2 -symmetric molecule of the dibenzyltin(IV) complex, *i.e.* aquadibenzylbis(4-{(E)-[(Z)-4-hydroxypent-3-en-2-ylidene]amino}benzoato)tin(IV). The coordination sphere of the Sn atom includes a water ligand, which, along with the Sn atom, sits on the twofold axis. The coordination geometry is thus that of a slightly distorted pentagonal bipyramid with the carboxylate and aqua ligands in the equatorial plane and the benzyl ligands occupying axial

Figure 5

The molecular structure of the Sn^{IV} complex molecule of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. [Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.]

positions, where the C-Sn-C angle is now much closer to 180° than in complexes (I) and (II) (Fig. 5 and Table 4). In keeping with the symmetry, the benzyl rings now fold sideways and in opposite directions like paddles over the carboxylate groups. As the carboxylate ligands are now 4-substituted benzoates, they extend outwards from the Sn atom almost linearly in a broad V-shaped arrangement, instead of the nearly parallel azophenyl segments of the 2,5-substituted benzoates seen in the structures of (I) and (II). The carboxylate Sn-O distances show that the carboxylate groups coordinate much more symmetrically in (III) than in (I) and (II). The benzoate ligands are not planar along their entirety, but are composed of two distinctly planar segments twisted about the aniline C-N bond. The dihedral angle between the planar fragments is 49.79 (12)°. The hydroxy H atom in each benzoate ligand has migrated to the imino N atom. This zwitterionic nature has caused some delocalization of the bonding electrons in the alkyl chain, as seen by the bond lengths in Table 4.

The molecular structure of the analogous dibutyltin(IV) complex with the same substituted 4-aminobenzoate ligand (Basu Baul *et al.*, 2008) is similar to that of (III), albeit without

Table 4			-				
Selected	geometric	parameters	(Å,	°)	for	(III)	١.

8	· · · · · · · · · · · · · · · · · · ·		
Sn1-O1	2.257 (2)	N1-C5	1.421 (4)
Sn1-O2	2.348 (2)	N1-C8	1.327 (4)
Sn1-O3	2.337 (3)	C8-C9	1.378 (5)
Sn1-C13	2.150 (3)	C9-C10	1.425 (5)
O10-C10	1.248 (4)		
$O1-Sn1-O1^{i}$	78.94 (11)	$O2-Sn1-O2^{i}$	166.56 (11)
O1-Sn1-O2	57.26 (8)	O2-Sn1-O3	83.28 (6)
$O1-Sn1-O2^i$	136.18 (8)	O2-Sn1-C13	93.61 (11)
O1-Sn1-O3	140.53 (5)	$O2-Sn1-C13^{i}$	85.77 (11)
O1-Sn1-C13	93.73 (11)	O3-Sn1-C13	87.35 (10)
$O1-Sn1-C13^i$	90.36 (11)	C13-Sn1-C13 ⁱ	174.7 (2)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

the additional water ligand. The coordination geometry itself is thus more akin to the skew-trapezoidal bipyramidal arrangement of (I) and (II), with the more asymmetric carboxylate coordination and less linear C-Sn-C angle. The same 4-aminobenzoate ligand also appears in the structures of the trimethyltin(IV) and triphenyltin(IV) complexes. In these structures, as is often observed with this class of trialkyltin(IV) complexes, the benzoate ligand bridges Sn atoms *via* its

Figure 6

The molecular structure of the Sn^{IV} complex molecule of (IV), showing the atom-labelling scheme for the heteroatoms and the major-disorder conformations of the *n*-butyl ligands. Displacement ellipsoids are drawn at the 50% probability level. Most H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y + 1, -z + 1.]

Table 5		
Selected	geometric parameters (Å, $^{\circ}$) for (IV).	

Sn1-O2	2.227 (2)	Sn2-O4 ⁱ	2.7571 (18)
Sn1-O4	2.1914 (16)	Sn2-O7	2.0418 (16)
Sn1-O5	2.9442 (18)	$Sn2-O7^{i}$	2.1864 (16)
Sn1-O7	2.0270 (16)	Sn2-C39	2.128 (3)
Sn1-C31	2.094 (3)	Sn2-C43	2.125 (3)
Sn1-C35A	2.115 (4)	N1-N2	1.255 (3)
Sn1-C35B	2.121 (5)	N3-N4	1.256 (3)
Sn2-O1	2.2736 (18)		
O2-Sn1-O4	170.96 (8)	$O1-Sn2-O4^{i}$	127.00 (6)
O2-Sn1-O5	140.62 (7)	O1-Sn2-O7	92.10(7)
O2-Sn1-O7	91.70 (8)	$O1-Sn2-O7^{i}$	168.16 (7)
O2-Sn1-C31	85.24 (14)	O1-Sn2-C39	85.96 (10)
O2-Sn1-C35A	84.4 (2)	O1-Sn2-C43	86.21 (10)
O2-Sn1-C35B	91.4 (3)	$O4^{i}$ -Sn2-O7	140.89 (6)
O4-Sn1-O5	48.40 (6)	$O4^{i}$ -Sn2-O7 ⁱ	64.84 (5)
O4-Sn1-O7	79.26 (6)	$O4^{i}$ -Sn2-C39	76.37 (8)
O4-Sn1-C31	98.12 (12)	$O4^{i}$ -Sn2-C43	79.00 (9)
O4-Sn1-C35A	99.5 (2)	$O7-Sn2-O7^{i}$	76.07 (7)
O4-Sn1-C35B	91.8 (3)	O7-Sn2-C39	109.29 (9)
O5-Sn1-O7	127.63 (6)	$O7^{i}$ -Sn2-C39	97.91 (9)
O5-Sn1-C31	77.16 (12)	O7-Sn2-C43	108.14 (9)
O5-Sn1-C35A	81.2 (2)	$O7^{i}$ -Sn2-C43	97.29 (9)
O5-Sn1-C35B	78.9 (5)	C39-Sn2-C43	141.97 (11)
O7-Sn1-C31	114.14 (11)	Sn1-O4-Sn2 ⁱ	94.90 (6)
O7-Sn1-C35A	114.02 (18)	Sn1-O7-Sn2	135.02 (8)
O7-Sn1-C35B	108.7 (4)	$Sn1-O7-Sn2^{i}$	120.87 (8)
C31-Sn1-C35A	130.91 (17)	$Sn2-O7-Sn2^{i}$	103.93 (7)
C31-Sn1-C35B	137.1 (4)		

Symmetry code: (i) -x, -y + 1, -z + 1.

carboxylate and terminal oxide O atoms (the N atom also becomes protonated in these examples) to give a onedimensional coordination polymer (Basu Baul *et al.*, 2009).

Complexes (I)-(III) were obtained from syntheses involving a 1:2 stoichiometric ratio of dialkytin(IV) oxide or dichloride and the appropriate benzoic acid. When a 1:1 ratio was used, completely different structures were obtained for compounds (IV) and (V), which contain the familiar bis(dicarboxylatotetraorganodistannoxane) entity (Figs. 6 and 7, respectively). The Sn^{IV} complexes in octabutyltetrakis{ μ -(E)- $4-[(4-hydroxy-3,5-dimethylphenyl)diazenyl]benzoato}di-\mu_3$ oxido-tetratin(IV) ethanol disolvate, (IV), and octabutyltetrakis{(E)-3-[(2-hydroxybenzylidene)amino]propanoato}di- μ_3 -oxido-tetratin(IV), (V), are oxo-bridged tetranuclear dibutyltin(IV) complexes with four carboxylate ligands, thus maintaining the 1:1 Sn-carboxylate ligand ratio. The Sn coordination geometry of this class of structures has been described in detail (Basu Baul et al., 2006; Basu Baul, Dutta et al., 2017) and it was pointed out then that the coordination geometry and the distribution of Sn-O distances are quite similar across the 80 structures known at that time (Basu Baul et al., 2006). The Cambridge Structural Database (CSD, Version 5.42, November 2020 update; Groom et al., 2016) now contains 88 entries for this class of bis(dicarboxylatotetraorganodistannoxane) structures with a central Sn_4O_2 core. The molecular structures of compounds (IV) and (V) are no exception to the generally found arrangement (Tables 5 and 6). In the case of complex (IV), the bis(dicarboxylatotetraorganodistannoxane) molecule sits across a crystallographic centre of inversion and the asymmetric unit includes one

Selected geometri	c parameters (Å,	°) for (V).	
Sn1-O1	2.157 (4)	Sn3-O1	2.687 (4)
Sn1-O2	2.962 (4)	Sn3-O7	2.185 (4)
Sn1-O4	2.238 (4)	Sn3-O8	2.054 (4)
Sn1-O7	2.021 (4)	Sn3-O13	2.295 (4)
Sn1-C21	2.125 (5)	Sn3-C37	2.130 (5)
Sn1-C25	2.118 (6)	Sn3-C41	2.117 (5)
Sn2-O5	2.289 (4)	Sn4-O8	2.022(4)
Sn2-O7	2.035 (4)	Sn4-O9	2.170 (4)
Sn2-O8	2.159 (4)	Sn4-O10	2.908 (4)
Sn2-O9	2.749 (4)	Sn4-O12	2.267 (4)
Sn2-C29	2.115 (5)	Sn4-C65	2.125 (6)
Sn2-C33	2.119 (5)	Sn4-C69	2.129 (5)
O1-Sn1-O2	47.92 (13)	O1-Sn3-C41	79.64 (16)
O1-Sn1-O4	168.40 (14)	O7-Sn3-O8	75.04 (13)
O1-Sn1-O7	78.96 (14)	O7-Sn3-O13	164.68 (13)
O1-Sn1-C21	99.87 (19)	O7-Sn3-C37	99.74 (18)
O1-Sn1-C25	95.4 (2)	O7-Sn3-C41	95.43 (18)
O2-Sn1-O4	142.74 (13)	O8-Sn3-O13	90.05 (14)
O2-Sn1-O7	126.82 (14)	O8-Sn3-C37	108.06 (18)
O2-Sn1-C21	80.07 (19)	O8-Sn3-C41	108.35 (18)
O2-Sn1-C25	78.55 (19)	O13-Sn3-C37	88.07 (18)
O4-Sn1-O7	90.39 (14)	O13-Sn3-C41	85.82 (18)
O4-Sn1-C21	88.3 (2)	C37-Sn3-C41	143.0 (2)
O4-Sn1-C25	84.7 (2)	O8-Sn4-O9	78.42 (14)
O7-Sn1-C21	111.7 (2)	O8-Sn4-O10	127.46 (14)
O7-Sn1-C25	114.05 (18)	O8-Sn4-O12	90.96 (14)
C21-Sn1-C25	133.7 (2)	O8-Sn4-C65	113.08 (19)
O5-Sn2-O7	88.76 (14)	O8-Sn4-C69	111.7 (2)
O5-Sn2-O8	164.11 (14)	O9-Sn4-O10	49.09 (13)
O5-Sn2-O9	131.33 (13)	O9-Sn4-O12	168.21 (14)
O5-Sn2-C29	84.77 (19)	O9-Sn4-C65	95.69 (19)
O5-Sn2-C33	88.4 (2)	O9-Sn4-C69	101.3 (2)
O7-Sn2-O8	76.01 (14)	O10-Sn4-O12	141.50 (14)
O7-Sn2-O9	139.90 (13)	O10-Sn4-C65	79.04 (18)
O7-Sn2-C29	107.64 (19)	O10-Sn4-C69	80.90 (19)
O7-Sn2-C33	109.61 (19)	O12-Sn4-C65	83.66 (19)
O8-Sn2-O9	64.10 (12)	O12-Sn4-C69	87.3 (2)
O8-Sn2-C29	95.4 (2)	C65-Sn4-C69	134.4 (2)
O8-Sn2-C33	100.9 (2)	Sn1-O1-Sn3	95.95 (13)
O9-Sn2-C29	81.15 (17)	Sn1-O7-Sn2	136.7 (2)
O9-Sn2-C33	75.58 (18)	Sn1-O7-Sn3	118.47 (17)
C29-Sn2-C33	141.9 (2)	Sn2-O7-Sn3	104.34 (15)
O1-Sn3-O7	65.19 (12)	Sn2-O8-Sn3	104.61 (16)
O1-Sn3-O8	140.08 (13)	Sn2-O8-Sn4	120.77 (17)
O1-Sn3-O13	129.85 (13)	Sn3-O8-Sn4	134.05 (19)
O1-Sn3-C37	76.61 (17)	Sn2-O9-Sn4	94.56 (13)

Table (

molecule of ethanol. Complex (V) is a monoclinic packing polymorph of the previously reported triclinic form (Khoo *et al.*, 1993); the molecular conformations, even of the outer ends of the carboxylate ligands, are otherwise very similar. The carboxylate ligand in (V) contains two methylene groups between the imino and carboxylate functions, and neither the imino N atom nor the hydroxy group are involved in coordination with the Sn atoms. In contrast, similar carboxylate ligands containing just one methylene group coordinate in a tridentate fashion with Sn atoms by using the carboxylate, imino and hydroxy donor atoms (Basu Baul *et al.*, 2003; Basu Baul, Kehie *et al.*, 2017; Dakternieks *et al.*, 1998).

It can be speculated that the ratio of reagents is responsible for the quite different classes of complexes. While the carboxylate ligand in (V) is not of the benzoate type, that in (IV) is a 4-azobenzoate derivative, so one might expect a molecular structure not dissimilar to those of (I)–(III) if the nature of the carboxylate ligand was entirely responsible for

Figure 7

View of the unique molecule of (V), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Most H atoms have been omitted for clarity.

the resultant structure type. Nonetheless, compounds **5** and **6** in Basu Baul *et al.* (2006) have carboxylate ligands which are very close relatives of that in (V), with just one or two additional methyl substituents within the ligand, yet even a 1:2 ratio of dibutyltin(IV) dichloride to carboxylate in the synthesis reaction led to bis(dicarboxylatotetraorganodistannoxane) structures. In contrast, reaction of the same carboxylate ligand as that present in (V), *i.e.* (*E*)-3-[(2-hydroxybenzylidene)amino]propanoate, with triphenyl- and tributyltin(IV) dichloride in a 1:1 stoichiometric ratio led to

one-dimensional coordination polymers, in which the Sn atoms were bridged by the carboxylate groups [structures 1 and 2 in Basu Baul et al. (2006)]. There are no structures in the CSD possessing the (E)-4-[(4-hydroxy-3,5-dimethylphenyl)diazenyl]benzoate ligand present in (IV), but the corresponding 2-azobenzoate ligand appears as its trimethyl-, tributyl- and triphenyltin(IV) complexes (Basu Baul et al., 2012). In each structure, the 2-azobenzoate ligand exists in a zwitterionic form, where the hydroxy H atom has transferred to the azo N atom closest to the benzoate group; this transfer has not occurred in the 4-azobenzoate ligands of (IV). In the trimethyl- and tributyltin(IV) structures, the benzoate ligand bridges Sn centres via the carboxylate and oxo O atoms to give one-dimensional coordination polymers. The triphenyltin(IV) structure has discrete mononuclear molecules where the benzoate ligand has bidentate coordination to a single Sn atom via just its carboxylate group.

Interestingly, the (*E*)-2-hydroxy-5-[(3-methylphenyl)diazenyl]benzoate ligand present in (I) forms a bis(dicarboxylatotetraorganodistannoxane) structure in the presence of dioctyltin(IV) oxide in a 1:1 stoichiometric ratio, as do the corresponding 2-methoxyphenyl- and 4-chlorophenylazobenzoate ligands. However, when dioctyltin(IV) oxide was mixed in a 1:2 ratio with the unsubstituted phenyl- or the 4-methylazobenzoate ligands of this type, the products were mononuclear skew-trapezoidal bipyramidal complexes with a molecular structure akin to that of (I) (Basu Baul *et al.*, 2007). This further supports the hypothesis that the stoichiometric ratio of the regents has a dominant influence on the structure and composition of the resultant Sn complexes.

3.2. Supramolecular interactions

Each hydroxy group in complex (I) forms a strong intramolecular $O-H\cdots O$ hydrogen bond with the immediately adjacent carboxylate O atom, thereby creating six-membered loops with a graph-set motif (Bernstein *et al.*, 1995) of *S*(6) (Table 7). In addition, the O3 hydroxy group forms a weak intermolecular interaction with the corresponding carboxylate

Figure 8

One extended supramolecular chain of the molecules of (III), showing the $O-H\cdots O$ hydrogen bonds (magenta dashed lines). Most H atoms have been omitted for clarity.

Table 7	
Hydrogen-bond geometry (Å	Å, °) for (I).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O2	0.78 (3)	1.91 (3)	2.623 (3)	153 (3)
$O3-H3\cdots O2^i$	0.78 (3)	2.44 (3)	2.872 (3)	117 (3)
$O6A - H6A \cdots O5A$	0.84	1.90	2.62 (3)	144
$O6B - H6B \cdot \cdot \cdot O5B$	0.84	1.90	2.64 (2)	146

Symmetry code: (i) -x + 2, -y + 1, -z.

Table 8 Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

, ,		/ / /		
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O2	0.77 (3)	1.89 (3)	2.586 (2)	152 (3)
O3−H3···O5 ⁱⁱ	0.77 (3)	2.42 (3)	2.818 (2)	114 (3)
O6−H6···O5	0.76 (3)	1.89 (3)	2.596 (2)	153 (3)

Symmetry code: (ii) $-x + \frac{5}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

O atom of the centrosymmetrically-disposed neighbouring molecule, although this interaction might merely be a consequence of the bridging secondary Sn. . . O interaction involving the same carboxylate O atom, as described above (Fig. 2). Complex (II) displays an identical pattern of intra- and intermolecular $O-H \cdots O$ hydrogen-bonding interactions, even though the neighbouring molecules are related by a 21screw axis, instead of a centre of inversion (Table 8 and Fig. 4).

In the structure of complex (III), the protonated imino group forms an intramolecular N-H···O hydrogen bond with the oxide (deprotonated hydroxy) O atom within the same benzoate ligand (Table 9). The intramolecular interactions form closed six-membered loops which can be described by a graph-set motif of S(6). This latter O atom also accepts an intermolecular O-H···O hydrogen bond from the water ligand of a neighbouring molecule. The C_2 symmetry indicates that the water ligand forms two such intermolecular hydrogen bonds with neighbouring Sn complex molecules. The intermolecular interactions link the molecules into extended zigzag chains, which run parallel to the [101] direction and which can be described by a graph-set motif of C(14) (Fig. 8). As a result of the C_2 symmetry, the intermolecular interactions also form a centrosymmetric loop motif with a graph-set descriptor of $R_2^2(28)$ and a chain motif of $C_2^2(26)$, which involves the entire length of one molecule between the two oxide O atoms and just the water ligand of a second molecule bridging across to the next molecule in the chain. The long loop motif involves two water and two benzoate ligands.

In the structure of (IV), intermolecular hydrogen bonds link the hydroxy groups of the bis(dicarboxylatotetraorganodistannoxane) molecules and the ethanol solvent molecules into two-dimensional networks which lie parallel to the (102) plane (Table 10 and Fig. 9). Locally, adjacent Sn complex molecules are linked into chains by a centrosymmetric double bridge, where each bridge consists of an $O-H \cdots O$ interaction between the O3 hydroxy group as donor and the O6 hydroxy group of the next molecule in the chain as acceptor. This repeats in the reverse sense at the other site of the double bridge, as well as at the other end of the bis(dicarboxylato-

Table 9	
Hydrogen-bond geometry (Å, °) for (III).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O10$	0.82 (4)	2.01 (4)	2.631 (3)	132 (4)
$O3-H3\cdots O10^{ii}$	0.84 (1)	1.95 (2)	2.712 (3)	151 (4)
Symmetry code: (ii) x	$+\frac{1}{2} - v + \frac{1}{2} + \frac{1}{2}$	1	~ / /	

Table 10				
Hydrogen-bond	geometry	(Å,	°) for	(IV).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···O6 ⁱⁱ	0.85 (4)	2.05 (4)	2.801 (3)	146 (3)
O6−H6···O8 ⁱⁱⁱ	0.93 (4)	1.71 (4)	2.599 (3)	159 (4)
$O8-H8\cdots O5$	0.91 (5)	1.82 (5)	2.663 (3)	154 (4)

Symmetry codes: (ii) x + 2, y, z - 1; (iii) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

Hydrogen-bond	geometry ((Å,	°)	for	(V).	

Tabla 11

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H3···N1	0.84	1.83	2.575 (7)	147
$O6-H6\cdots N2$	0.84	1.88	2.616 (6)	146
O11-H11···N3	0.84	1.87	2.602 (7)	145
$O14-H14\cdots N4$	0.84	1.90	2.637 (6)	147

tetraorganodistannoxane) molecule, because the molecule itself is centrosymmetric. The O6 hydroxy group forms an O- $H \cdots O$ hydrogen bond with the O atom of a neighbouring ethanol molecule, which in turn donates a hydrogen bond to a carboxylate O atom in an Sn complex molecule from an adjacent chain of such molecules. In this way, the ethanol molecule crosslinks the chains of bis(dicarboxylatotetraorganodistannoxane) molecules to extend the network into sheets. Within the chains of molecules, the centrosymmetric $R_2^2(56)$ ring motif is discernible and involves four benzoate ligands and one Sn atom from each of two Sn₄O₂ cores. The crosslinking of these chains via the ethanol molecules forms additional acentric $R_5^5(38)$ ring motifs.

In the structure of (V), the hydroxy H atom has not migrated to the imino N atom. Each hydroxy group forms an intramolecular hydrogen bond with the adjacent N atom in the same ligand, thereby creating six-membered loops with a graph-set motif of S(6) (Table 11).

In (I), pairs of molecules are aligned head-to-tail across centres of inversion through π - π interactions involving the parallel planar phenylazobenzoate segments. The centroidcentroid distances between the overlaid benzoate-phenyl ring pairs involving one disorder conformation are 3.740 (7) Å for the rings containing atoms C2 and C24A, and 3.824 (5) Å for the rings containing atoms C8 and C15A, with centroid offsets of 1.33 and 1.65 Å, respectively. The cavity in the centre of this dimeric arrangement is occupied by a cyclohexane molecule (Fig. 2). The fully overlaid dimers resulting from the π - π pairing interactions are extended into tetramers by the secondary $Sn \cdots O$ interactions. These tetramers do not stack further, because the phenyl rings sit above the cyclohexane molecule in the cavity of the next tetramer. The structure of (II) does not display the same type of head-to-tail aggregation.

One of the supramolecular sheets present in the structure of (IV), showing the $O-H\cdots O$ hydrogen bonds (magenta dashed lines). One double-bridged chain is visible extending horizontally across the middle of the image, with the ethanol molecules crosslinking adjacent chains. Most H atoms have been omitted for clarity.

Instead, molecules are stacked parallel to one another in a continuous stair-like arrangement, with adjacent members related by a translation of one unit cell parallel to the [010] direction. The less-planar benzoate ligands from adjacent molecules have inter-ligand distances which are suggestive of $\pi - \pi$ interactions, but the π -systems are significantly offset, with centroid-centroid distances for the overlaid benzoate rings and overlaid phenyl rings being well in excess of 4.1 Å and the ring-centroid offset for the benzoate rings being 2.93 Å and even more for the phenyl rings (Fig. 4). Both of the above stacking motifs have been discussed by Linden & Basu Baul (2016), being observed in the benzene pseudo-isomorph of (I) and the dibutyltin(IV) analogue of (II), respectively (Basu Baul et al., 2004). However, in the dibutyltin(IV) analogue of (II), the overlay of the benzoate rings indicates much stronger π - π interactions than in (II) [centroid-centroid distance of 3.6310 (13) Å and ring-centroid offset of 1.18 Å]; this could be related to the steric influence of the *n*-butyl *versus* benzyl ligands, respectively. The structures of (III)–(V) do not display significant π - π stacking interactions.

4. Conclusion

The molecular structures of five dialkyltin(IV) carboxylate complexes show two of the main geometric coordination motifs commonly observed for these types of compounds and the results suggest that this diversity may be influenced by the stoichiometric ratio of components in the synthesis. The supramolecular structures arising from consideration of secondary $Sn \cdots O$ interactions and/or classic hydrogen bonds

include discrete molecules, centrosymmetric dimers, extended chains and sheets.

Funding information

Funding for this research was provided by The Indo-Swiss Joint Research Programme, Joint Utilisation of Advanced Facilities (grant No. JUAF 11 to TSBB and AL).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Basu Baul, T. S., Dutta, D., Duthie, A., Guchhait, N., Rocha, B. G. M., Guedes da Silva, M. F. C., Mokhamatam, R. B., Raviprakash, N. & Manna, S. K. (2017). J. Inorg. Biochem. 166, 34–48.
- Basu Baul, T. S., Dutta, S., Masharing, C., Rivarola, E. & Englert, U. (2003). *Heteroatom Chem.* 14, 149–154.
- Basu Baul, T. S., Kehie, P., Höpfl, H., Duthie, A., Eng, G. & Linden, A. (2017). Appl. Organomet. Chem. **31**, e3547.
- Basu Baul, T. S., Masharing, C., Basu, S., Pettinari, C., Rivarola, E., Chantrapromma, S. & Fun, H.-K. (2008). *Appl. Organomet. Chem.* 22, 114–121.
- Basu Baul, T. S., Masharing, C., Basu, S., Rivarola, E., Holčapek, M., Jirásko, R., Lyčka, A., de Vos, D. & Linden, A. (2006). J. Organomet. Chem. 691, 952–965.
- Basu Baul, T. S., Masharing, C., Ruisi, G., Pettinari, C. & Linden, A. (2009). J. Inorg. Organomet. Polym. 19, 395–400.
- Basu Baul, T. S., Paul, A. & Linden, A. (2012). J. Organomet. Chem. 696, 4229–4235.
- Basu Baul, T. S., Rynjah, W., Rivarola, E., Pettinari, C., Holčapek, M., Jirásko, R., Englert, U. & Linden, A. (2007). J. Organomet. Chem. 692, 3625–3635.

research papers

- Baul, T. S. B., Rynjah, W., Willem, R., Biesemans, M., Verbruggen, I., Holèapek, M., de Vos, D. & Linden, A. (2004). J. Organomet. Chem. 689, 4691–4701.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. & Smits, J. M. M. (1994). *DIRDIF94: The DIRDIF program system*. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *PATTY: The DIRDIF program system.* Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Buntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A, 102, 2472–2482.
- Chandrasekhar, V., Nagendran, S. & Baskar, V. (2002). Coord. Chem. Rev. 235, 1–52.
- Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.
- Dakternieks, D., Duthie, A., Smyth, D. R., Stapleton, C. P. D. & Tiekink, E. R. T. (2003). Organometallics, 22, 4599–4603.
- Debnath, P., Singh, K. S., Singh, K. K., Sureshkumar Singh, S., Sieroń, L. & Maniukiewicz, W. (2020). New J. Chem. 44, 5862–5872.
- Gielen, M. & Tiekink, E. R. T. (2005). Editors. *Metallotherapeutic* drug and metal-based diagnostic agents: ⁵⁰Sn Tin compounds and their therapeutic potential, pp. 421–439. Chichester: Wiley.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Hussain, S., Ali, S., Shahzadi, S., Tahir, M. N. & Shahid, M. (2015). J. Coord. Chem. 68, 2369–2387.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Khoo, L. E., Zhou, Z.-H. & Mak, T. C. W. (1993). J. Crystallogr. Spectrosc. Res. 23, 153–157.
- Linden, A. & Basu Baul, T. S. (2016). Acta Cryst. C72, 313-325.
- Linden, A., Wolstenholme, D., Basu Baul, T. S. & Rynjah, W. (2007). *Acta Cryst.* E63, m1547–m1548.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* 53, 226–235.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography, Part A*, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prabusankar, G. & Murugavel, R. (2004). *Organometallics*, **23**, 5644–5647.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.
- Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.
- Wang, J.-Q., Kuang, D.-Z., Chen, Z.-M., Feng, Y.-L. & Zhang, F.-X. (2005). *Huaxue Shiji*, 27, 163.
- Willem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. & Tiekink, E. R. T. (1998). Organometallics, 17, 5758–5766.

Acta Cryst. (2021). C77, 209-220 [https://doi.org/10.1107/S2053229621003545]

Structural diversity among some dialkyltin(IV) benzoate and related derivatives

Anthony Linden and Tushar S. Basu Baul

Computing details

For all structures, data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN* and *SCALEPACK* (Otwinowski & Minor, 1997). Program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994) for (I); *SHELXS97* (Sheldrick, 2008) for (II), (IV), (V); PATTY and *DIRDIF94* (Beurskens *et al.*, 1992, 1994) for (III). For all structures, program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL2018* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2020) and *PLATON* (Spek, 2020).

Dibutylbis{(E)-2-hydroxy-5-[(3-methylphenyl)diazenyl]benzoato}tin(IV) cyclohexane hemisolvate (I)

Crystal data

 $[Sn(C_4H_9)_2(C_{14}H_{11}N_2O_3)_2] \cdot 0.5C_6H_{12}$ $M_r = 785.49$ Monoclinic, $P2_1/c$ a = 9.4028 (1) Å b = 25.1718 (2) Å c = 15.5008 (1) Å $\beta = 93.3046$ (3)° V = 3662.71 (5) Å³ Z = 4

Data collection

Nonius KappaCCD area detector diffractometer Radiation source: Nonius FR590 sealed tube generator Horizontally mounted graphite crystal monochromator Detector resolution: 9 pixels mm⁻¹ φ and ω scans with κ offsets Absorption correction: multi-scan (SORTAV; Blessing, 1995)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.110$ S = 1.0410702 reflections 623 parameters F(000) = 1624 $D_x = 1.424 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 84811 reflections $\theta = 2.0-30.0^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 160 KPrism, orange $0.25 \times 0.17 \times 0.12 \text{ mm}$

 $T_{\min} = 0.854, T_{\max} = 0.917$ 90950 measured reflections 10708 independent reflections 7109 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.066$ $\theta_{\text{max}} = 30.0^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$ $h = -13 \rightarrow 13$ $k = -35 \rightarrow 35$ $l = -21 \rightarrow 21$

645 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier mapHydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.90 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 1.0512P]$	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	

Special details

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: petrolum ether Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: on a glass fibre Mosaicity (deg.): 0.504 (1) Frames collected: 817 Seconds exposure per frame: 33 Degrees rotation per frame: 1.1 Crystal-detector distance (mm): 39.0 Client: Tushar Basubaul Sample code: TSBB-2 (L0218)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The asymmetric unit contains one molecule of the Sn-complex, plus one half of a cyclohexane molecule. The cyclohexane molecule sits about a crystallographic centre of inversion. One of the carboxylate ligands is disordered in its entirety over two conformations, the difference arising from a reversal of the direction of the zig-zag at the N=N bond. Two positions were defined for all atoms of this ligand, except for the carboxylate O atom bound strongly with the Sn-atom, which is not significantly disordered. Refinement of constrained site occupation factors for the two orientations yielded a value of 0.563 (5) for the major conformation. Similarity restraints were applied to the chemically equivalent bond lengths and angles of all atoms in the carboxylate ligands, including those of the ordered ligand. Furthermore, neighbouring atoms within and between each conformation of the disordered ligand were restrained to have similar atomic displacement parameters. The geometry of the cyclohexane molecule is poor because of possible disorder, as indicated by the enlarged atomic displacement parameters, but no attempt was made to resolve the disorder; the C-C distances within the solvent molecule were restrained to 1.52 (1) Å.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sn1	1.14355 (2)	0.40458 (2)	0.17524 (2)	0.03777 (7)	
01	0.99456 (19)	0.45491 (7)	0.22890 (10)	0.0422 (4)	
O2	1.01081 (19)	0.48431 (7)	0.09670 (11)	0.0459 (4)	
O3	0.8742 (2)	0.57069 (8)	0.04591 (11)	0.0452 (4)	
H3	0.922 (4)	0.5455 (14)	0.045 (2)	0.069 (12)*	
N1	0.6414 (2)	0.57079 (8)	0.36788 (13)	0.0389 (5)	
N2	0.5572 (2)	0.60765 (8)	0.38296 (13)	0.0385 (5)	
C1	0.9573 (3)	0.48839 (10)	0.16860 (14)	0.0375 (5)	
C2	0.8560 (2)	0.53078 (9)	0.18696 (14)	0.0354 (5)	
C3	0.8204 (3)	0.56998 (10)	0.12480 (15)	0.0364 (5)	
C4	0.7271 (3)	0.61062 (10)	0.14413 (16)	0.0414 (6)	
H4	0.704542	0.637386	0.102346	0.050*	
C5	0.6672 (3)	0.61257 (10)	0.22263 (16)	0.0401 (6)	
H5	0.604374	0.640728	0.235119	0.048*	
C6	0.6987 (3)	0.57297 (10)	0.28457 (15)	0.0359 (5)	
C7	0.7924 (3)	0.53284 (9)	0.26635 (15)	0.0358 (5)	
H7	0.814077	0.506154	0.308404	0.043*	
C8	0.4993 (3)	0.60429 (9)	0.46625 (15)	0.0370 (5)	
C9	0.3989 (3)	0.64256 (10)	0.48359 (16)	0.0404 (6)	
H9	0.374403	0.668761	0.441186	0.049*	
C10	0.3330 (3)	0.64347 (11)	0.56202 (17)	0.0442 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C11	0.3726 (3)	0.60474 (11)	0.62258 (17)	0.0475 (7)	
H11	0.330706	0.604756	0.676913	0.057*	
C12	0.4716 (3)	0.56619 (11)	0.60530(17)	0.0474 (6)	
H12	0.495179	0.539636	0.647273	0.057*	
C13	0.5368 (3)	0.56584 (10)	0.52760 (16)	0.0419 (6)	
H13	0.606252	0.539696	0.516368	0.050*	
C27	0.2235 (3)	0.68518 (13)	0.5788 (2)	0.0584 (8)	
H271	0.184768	0.678779	0.635272	0.088*	
H272	0.146349	0.683583	0.533646	0.088*	
H273	0.268068	0.720375	0.578592	0.088*	
04	1.16131 (18)	0.37375 (7)	0.30096 (11)	0.0428 (4)	
O5A	1.335 (2)	0.3262 (13)	0.2380 (11)	0.038 (3)	0.437 (5)
O6A	1.4503 (15)	0.2495 (6)	0.3328 (6)	0.0458 (18)	0.437 (5)
H6A	1.426681	0.265078	0.286191	0.069*	0.437 (5)
N3A	1.1171 (13)	0.3174 (6)	0.5944 (7)	0.0364 (18)	0.437 (5)
N4A	1.1244 (5)	0.2927 (2)	0.6633 (3)	0.0403 (12)	0.437 (5)
C14A	1.263 (3)	0.3393(10)	0.3002 (11)	0.035 (2)	0.437 (5)
C15A	1.276 (2)	0.3105 (7)	0.3838 (9)	0.0336(17)	0.437 (5)
C16A	1.3711 (14)	0.2678 (5)	0.3955 (6)	0.0361 (17)	0.437 (5)
C17A	1.3879 (9)	0.2418 (3)	0.4754 (5)	0.0358(15)	0.437(5)
H171	1.455009	0.213821	0.483992	0.043*	0.437 (5)
C18A	1.3061 (8)	0.2576 (3)	0.5407 (4)	0.0292 (13)	0.437 (5)
H181	1.316526	0.239976	0.594895	0.035*	0.437 (5)
C19A	1.2077 (8)	0.2987 (3)	0.5299 (4)	0.0309 (14)	0.437 (5)
C20A	1.1937 (12)	0.3254 (4)	0.4520 (6)	0.0303 (16)	0.437 (5)
H201	1.128234	0.354046	0.444884	0.036*	0.437 (5)
C21A	1.0284 (8)	0.3130 (3)	0.7254 (5)	0.0394 (15)	0.437 (5)
C22A	0.9380 (17)	0.3551 (7)	0.7085 (9)	0.047 (2)	0.437 (5)
H221	0.938030	0.372809	0.654406	0.057*	0.437 (5)
C23A	0.846 (3)	0.3720 (12)	0.7709 (13)	0.0523 (19)	0.437 (5)
C24A	0.8551 (14)	0.3465 (5)	0.8502 (8)	0.056 (2)	0.437 (5)
H241	0.795821	0.358344	0.893955	0.067*	0.437 (5)
C25A	0.9464 (10)	0.3049 (4)	0.8683 (6)	0.0552 (18)	0.437 (5)
H25A	0.948616	0.288099	0.923288	0.066*	0.437 (5)
C26A	1.0355 (8)	0.2874 (3)	0.8057 (6)	0.0447 (16)	0.437 (5)
H261	1.099738	0.258732	0.817100	0.054*	0.437 (5)
C28A	0.7532 (13)	0.4206 (5)	0.7581 (10)	0.059 (2)	0.437 (5)
H281	0.665835	0.411168	0.724009	0.089*	0.437 (5)
H282	0.804899	0.447936	0.727597	0.089*	0.437 (5)
H283	0.728524	0.434321	0.814542	0.089*	0.437 (5)
O5B	1.3096 (18)	0.3282 (9)	0.2321 (9)	0.038 (2)	0.563 (5)
06B	1.4630 (12)	0.2517 (4)	0.3081 (5)	0.0430(13)	0.563 (5)
H6B	1.437641	0.272918	0.268220	0.064*	0.563(5)
N3B	1 1851 (4)	0.28580 (16)	0.6084(2)	0.0382(10)	0.563(5)
N4B	1.0894 (10)	0.3200 (5)	0.6092(5)	0.0395(15)	0.563(5)
C14B	1.253 (2)	0.3355 (7)	0.3023 (9)	0.034 (2)	0.563(5)
C15B	1.2916 (16)	0.3040 (5)	0.3807 (7)	0.0325(14)	0.563(5)
C16B	1.3935 (10)	0.2631 (4)	0.3785 (5)	0.0335 (14)	0.563(5)
0100		0.2001 (1)		0.0000 (11)	5.5 (5)

C17B	1.4235 (7)	0.2322 (3)	0.4516 (4)	0.0376 (13)	0.563 (5)
H172	1.493150	0.204936	0.450500	0.045*	0.563 (5)
C18B	1.3532 (6)	0.2410 (2)	0.5249 (4)	0.0350(11)	0.563 (5)
H182	1.373890	0.219341	0.574244	0.042*	0.563 (5)
C19B	1.2507 (6)	0.2814 (3)	0.5287 (3)	0.0314 (12)	0.563 (5)
C20B	1.2228 (9)	0.3132 (3)	0.4569 (5)	0.0328 (14)	0.563 (5)
H202	1.156312	0.341497	0.459372	0.039*	0.563 (5)
C21B	1.0245 (7)	0.3227(3)	0.6912 (4)	0.0404(13)	0.563 (5)
C22B	0.9174 (13)	0.3598(5)	0.6964(7)	0.0474(17)	0.563 (5)
H222	0.890803	0 380898	0.647321	0.057*	0.563 (5)
C23B	0.890003 0.847 (3)	0.3667 (9)	0.7726 (10)	0.057	0.563(5)
C24B	0.8824(11)	0.3341(4)	0.8423 (6)	0.0554 (18)	0.563(5)
H242	0.833196	0.337597	0.893834	0.067*	0.563(5)
C25B	0.9873 (8)	0.2969 (3)	0.8375 (5)	0.007	0.563(5)
H252	1 011694	0.275187	0.886349	0.065*	0.563(5)
C26B	1.0593 (6)	0.279107 0.2902(2)	0.000349	0.005 0.0465 (12)	0.563(5)
U20D	1.131037	0.2502 (2)	0.758446	0.056*	0.503(5)
C28B	0.7288(11)	0.203793 0.4068(A)	0.758440 0.7728(8)	0.050	0.503(5)
U28D	0.7288 (11)	0.4008 (4)	0.7728 (8)	0.071 (2)	0.503(5)
11204 LI205	0.734429	0.434969	0.014303	0.107*	0.503(5)
П205 Ц206	0.041172	0.369333	0.789138	0.107*	0.503(3)
П200 С20	0.713013	0.422241 0.24748(10)	0.714997 0.10760 (16)	0.107°	0.303 (3)
U29	1.0105(5)	0.34748 (10)	0.10700 (10)	0.0412(0)	
П291 11202	0.978304	0.302721	0.032013	0.049*	
H292	1.0/5319	0.310210	0.094/48	0.049*	
C30	0.8923 (3)	0.32999 (11)	0.16058 (16)	0.0429 (6)	
H301	0.930/99	0.315112	0.216247	0.051*	
H302	0.834154	0.361491	0.1/3503	0.051*	
C31	0.7970 (3)	0.28867 (11)	0.11466 (17)	0.0444 (6)	
H311	0.757029	0.303476	0.059265	0.053*	
H312	0.854462	0.257036	0.101545	0.053*	
C32	0.6759 (3)	0.27222 (14)	0.1699 (2)	0.0600 (8)	
H321	0.715235	0.256159	0.223728	0.090*	
H322	0.614986	0.246356	0.138249	0.090*	
H323	0.619406	0.303553	0.183397	0.090*	
C33	1.3355 (3)	0.44608 (11)	0.16023 (18)	0.0474 (6)	
H331	1.312307	0.483083	0.142993	0.057*	
H332	1.389692	0.447418	0.216890	0.057*	
C34	1.4310 (3)	0.42214 (11)	0.09390 (18)	0.0450 (6)	
H341	1.447514	0.384176	0.107854	0.054*	
H342	1.380992	0.424035	0.035994	0.054*	
C35	1.5724 (3)	0.44980 (13)	0.0910(2)	0.0536 (7)	
H351	1.626598	0.444800	0.147116	0.064*	
H352	1.556030	0.488363	0.082824	0.064*	
C36	1.6606 (3)	0.42936 (15)	0.0192 (2)	0.0639 (8)	
H361	1.679330	0.391364	0.027768	0.096*	
H362	1.751182	0.448674	0.020065	0.096*	
H363	1.608370	0.434816	-0.036627	0.096*	
C37	0.9061 (6)	0.5119 (2)	0.5726 (4)	0.149 (3)	
		· ·			

H371	0.948957	0.493958	0.624624	0.179*
H372	0.822029	0.532405	0.589114	0.179*
C38	1.0160 (4)	0.54900 (15)	0.5328 (3)	0.0857 (12)
H381	0.963940	0.572510	0.490655	0.103*
H382	1.057966	0.571923	0.579548	0.103*
C39	1.1321 (5)	0.5243 (2)	0.4897 (3)	0.1039 (15)
H391	1.188027	0.552653	0.463175	0.125*
H392	1.195644	0.506552	0.533944	0.125*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03821 (10)	0.04234 (12)	0.03366 (10)	0.00372 (7)	0.00971 (7)	0.00012 (7)
01	0.0486 (10)	0.0441 (10)	0.0349 (9)	0.0126 (8)	0.0111 (8)	0.0026 (8)
O2	0.0468 (10)	0.0604 (12)	0.0316 (9)	0.0075 (9)	0.0107 (8)	0.0006 (8)
03	0.0548 (12)	0.0512 (12)	0.0307 (9)	0.0075 (10)	0.0120 (8)	0.0062 (8)
N1	0.0425 (12)	0.0396 (12)	0.0354 (11)	0.0001 (9)	0.0097 (9)	-0.0034 (9)
N2	0.0390 (11)	0.0406 (12)	0.0368 (11)	-0.0005 (9)	0.0098 (9)	-0.0027 (9)
C1	0.0387 (13)	0.0442 (14)	0.0298 (12)	0.0005 (11)	0.0040 (10)	-0.0001 (10)
C2	0.0351 (12)	0.0407 (13)	0.0305 (12)	-0.0014 (10)	0.0043 (9)	-0.0033 (10)
C3	0.0399 (13)	0.0389 (13)	0.0308 (12)	-0.0033 (10)	0.0055 (10)	0.0015 (10)
C4	0.0506 (15)	0.0387 (13)	0.0352 (13)	0.0013 (11)	0.0045 (11)	0.0046 (10)
C5	0.0462 (15)	0.0353 (13)	0.0393 (14)	0.0013 (11)	0.0069 (11)	-0.0022 (11)
C6	0.0376 (13)	0.0374 (13)	0.0334 (12)	-0.0039 (10)	0.0084 (10)	-0.0028 (10)
C7	0.0405 (13)	0.0358 (13)	0.0314 (12)	-0.0004 (10)	0.0045 (10)	0.0025 (9)
C8	0.0368 (13)	0.0404 (14)	0.0342 (12)	-0.0040 (10)	0.0065 (10)	-0.0051 (10)
C9	0.0427 (14)	0.0412 (14)	0.0380 (13)	-0.0019 (11)	0.0080 (11)	-0.0025 (11)
C10	0.0423 (14)	0.0505 (16)	0.0406 (14)	-0.0029 (12)	0.0087 (11)	-0.0089 (12)
C11	0.0535 (17)	0.0553 (17)	0.0346 (13)	-0.0057 (13)	0.0111 (12)	-0.0065 (12)
C12	0.0578 (17)	0.0490 (16)	0.0360 (14)	-0.0013 (13)	0.0070 (12)	0.0023 (12)
C13	0.0439 (14)	0.0425 (15)	0.0397 (14)	0.0005 (11)	0.0052 (11)	-0.0034 (11)
C27	0.0598 (18)	0.0632 (19)	0.0541 (18)	0.0109 (15)	0.0194 (14)	-0.0048 (15)
O4	0.0445 (10)	0.0474 (11)	0.0369 (9)	0.0082 (8)	0.0057 (8)	0.0012 (8)
O5A	0.031 (6)	0.055 (5)	0.028 (4)	0.010 (4)	0.008 (4)	0.006 (3)
O6A	0.051 (4)	0.051 (3)	0.037 (5)	0.005 (3)	0.017 (4)	0.011 (4)
N3A	0.035 (4)	0.041 (3)	0.033 (3)	0.000 (3)	0.007 (3)	0.001 (3)
N4A	0.044 (2)	0.044 (2)	0.034 (2)	-0.004 (2)	0.009 (2)	0.0025 (19)
C14A	0.036 (4)	0.039 (4)	0.032 (4)	-0.003 (4)	0.006 (3)	0.002 (3)
C15A	0.031 (4)	0.035 (4)	0.035 (3)	-0.001 (3)	0.004 (3)	-0.002 (3)
C16A	0.034 (4)	0.042 (3)	0.033 (3)	-0.004 (3)	0.015 (3)	-0.002 (3)
C17A	0.035 (3)	0.036 (3)	0.037 (4)	0.003 (3)	0.011 (3)	0.002 (3)
C18A	0.029 (3)	0.030 (4)	0.029 (3)	0.000 (3)	0.009 (3)	-0.002 (3)
C19A	0.032 (3)	0.029 (3)	0.032 (2)	0.001 (2)	0.003 (2)	-0.001 (2)
C20A	0.030 (4)	0.033 (4)	0.029 (3)	0.004 (3)	0.005 (2)	0.001 (2)
C21A	0.037 (3)	0.045 (3)	0.037 (4)	-0.002 (3)	0.007 (3)	-0.001 (3)
C22A	0.045 (4)	0.053 (4)	0.043 (4)	-0.003 (3)	0.002 (3)	-0.009 (3)
C23A	0.047 (3)	0.061 (4)	0.050 (3)	-0.005 (3)	0.010 (3)	-0.017 (3)
C24A	0.049 (4)	0.063 (5)	0.057 (4)	-0.006 (3)	0.016 (3)	-0.015 (4)

C25A	0.058 (4)	0.058 (4)	0.052 (4)	-0.008 (3)	0.023 (3)	-0.009 (3)
C26A	0.047 (4)	0.049 (3)	0.039 (4)	0.002 (3)	0.009 (3)	0.000 (3)
C28A	0.050 (4)	0.063 (5)	0.067 (5)	0.007 (4)	0.020 (3)	-0.010 (4)
O5B	0.037 (5)	0.047 (4)	0.031 (3)	0.002 (4)	0.004 (3)	-0.001 (3)
O6B	0.046 (3)	0.050 (2)	0.035 (3)	0.0119 (19)	0.018 (3)	0.009 (3)
N3B	0.039 (2)	0.041 (2)	0.0348 (19)	-0.0003 (16)	0.0087 (15)	0.0036 (16)
N4B	0.043 (4)	0.043 (3)	0.034 (3)	-0.003 (3)	0.006 (2)	0.000 (2)
C14B	0.034 (3)	0.037 (3)	0.033 (3)	-0.005 (3)	0.005 (3)	-0.004 (3)
C15B	0.033 (3)	0.037 (3)	0.028 (2)	-0.001 (2)	0.007 (2)	0.000 (2)
C16B	0.032 (3)	0.038 (3)	0.032 (3)	-0.001 (2)	0.011 (2)	-0.001 (2)
C17B	0.036 (3)	0.036 (3)	0.041 (3)	0.000 (2)	0.005 (2)	0.001 (2)
C18B	0.035 (3)	0.034 (3)	0.037 (3)	0.005 (2)	0.005 (2)	0.003 (2)
C19B	0.030 (3)	0.033 (3)	0.032 (2)	0.001 (2)	0.004 (2)	0.002 (2)
C20B	0.030 (3)	0.033 (3)	0.036 (2)	0.002 (2)	0.003 (2)	-0.004 (2)
C21B	0.042 (2)	0.042 (3)	0.038 (3)	-0.008 (2)	0.007 (2)	-0.007 (2)
C22B	0.044 (4)	0.053 (3)	0.045 (3)	0.002 (3)	0.004 (3)	-0.013 (3)
C23B	0.045 (3)	0.065 (4)	0.050 (3)	-0.002 (3)	0.007 (3)	-0.018 (3)
C24B	0.054 (4)	0.062 (4)	0.052 (3)	-0.007 (3)	0.010 (3)	-0.013 (3)
C25B	0.057 (4)	0.059 (3)	0.048 (4)	-0.002 (3)	0.014 (3)	0.003 (3)
C26B	0.048 (3)	0.051 (3)	0.042 (3)	-0.005 (2)	0.010(2)	0.002 (3)
C28B	0.066 (4)	0.086 (5)	0.064 (4)	0.007 (4)	0.017 (3)	-0.013 (4)
C29	0.0446 (14)	0.0470 (15)	0.0325 (12)	0.0051 (11)	0.0080 (10)	-0.0024 (11)
C30	0.0454 (15)	0.0493 (15)	0.0345 (13)	0.0006 (12)	0.0077 (11)	-0.0012 (11)
C31	0.0435 (14)	0.0481 (15)	0.0414 (14)	0.0049 (12)	0.0008 (11)	-0.0033 (12)
C32	0.0463 (16)	0.068 (2)	0.066 (2)	-0.0095 (14)	0.0066 (14)	-0.0134 (16)
C33	0.0475 (15)	0.0461 (15)	0.0491 (15)	-0.0055 (12)	0.0080 (12)	-0.0029 (12)
C34	0.0393 (14)	0.0487 (15)	0.0473 (15)	-0.0024 (12)	0.0043 (11)	-0.0005 (12)
C35	0.0438 (15)	0.0635 (19)	0.0539 (17)	-0.0032 (13)	0.0059 (13)	0.0034 (14)
C36	0.0453 (17)	0.081 (2)	0.067 (2)	0.0053 (16)	0.0131 (15)	0.0117 (18)
C37	0.113 (4)	0.210 (7)	0.119 (4)	0.063 (5)	-0.036 (4)	-0.073 (5)
C38	0.081 (3)	0.069 (2)	0.109 (3)	0.007 (2)	0.022 (2)	0.003 (2)
C39	0.098 (3)	0.125 (4)	0.090 (3)	0.032 (3)	0.011 (3)	-0.001 (3)

Geometric parameters (Å, °)

Sn1—O1	2.0961 (16)	C26A—H261	0.9500
Sn1—O2	2.6252 (18)	C28A—H281	0.9800
Sn1—O4	2.0954 (17)	C28A—H282	0.9800
Sn1—O5A	2.81 (3)	C28A—H283	0.9800
Sn1—O5B	2.60 (2)	O5B—C14B	1.253 (4)
Sn1—C29	2.110 (3)	O6B—C16B	1.336 (6)
Sn1—C33	2.110 (3)	O6B—H6B	0.8400
Sn1—O3 ⁱ	3.4786 (17)	N3B—N4B	1.246 (8)
01—C1	1.292 (3)	N3B—C19B	1.418 (6)
O2—C1	1.253 (2)	N4B—C21B	1.444 (8)
O3—C3	1.350 (3)	C14B—C15B	1.480 (8)
О3—Н3	0.78 (3)	C15B—C20B	1.398 (8)
N1—N2	1.250 (3)	C15B—C16B	1.407 (8)

Acta Cryst. (2021). C77, 209-220

N1—C6	1.429 (3)	C16B—C17B	1.389 (8)
N2—C8	1.433 (3)	C17B—C18B	1.366 (7)
C1—C2	1.469 (3)	C17B—H172	0.9500
C2—C7	1.400 (3)	C18B—C19B	1.405 (7)
C2—C3	1.406 (3)	C18B—H182	0.9500
C3—C4	1.392 (4)	C19B—C20B	1.383 (7)
C4—C5	1.371 (3)	C20B—H202	0.9500
C4—H4	0.9500	C21B—C22B	1.377 (8)
C5—C6	1.404 (3)	C21B—C26B	1.390 (7)
С5—Н5	0.9500	C22B—C23B	1.397 (9)
С6—С7	1.380 (3)	C22B—H222	0.9500
С7—Н7	0.9500	C23B—C24B	1.381 (9)
C8—C9	1.386 (3)	C23B—C28B	1.503 (10)
C8—C13	1.388 (3)	C24B—C25B	1.366 (9)
C9—C10	1.396 (3)	C24B—H242	0.9500
С9—Н9	0.9500	C25B—C26B	1.401 (8)
C10—C11	1.389 (4)	C25B—H252	0.9500
C10—C27	1.504 (4)	C26B—H263	0.9500
$C_{11} - C_{12}$	1 382 (4)	C28B—H284	0.9800
C11—H11	0.9500	C28B—H285	0.9800
C12-C13	1 383 (3)	C28B—H286	0.9800
C12—H12	0.9500	$C_{29} - C_{30}$	1 529 (3)
C13—H13	0.9500	C29—H291	0.9900
C27—H271	0.9800	C29—H292	0.9900
$C_{27} = H_{272}$	0.9800	C_{30} C_{31}	1 522 (4)
C27—H273	0.9800	C30—H301	0.9900
O4-C14B	1 291 (4)	C30—H302	0.9900
04-C14A	1.291(1) 1 291(4)	$C_{31} - C_{32}$	1.521(4)
054 $C144$	1.251(4) 1.254(4)	C31_H311	0.9900
O64 - C164	1.234(4) 1 340(9)	C31_H312	0.9900
O64 - H64	0.8400	C32_H321	0.9900
	1.233(10)	C32—H321	0.9800
N3A C19A	1.235(10) 1.430(10)	C32 H323	0.9800
NAA C21A	1.450(10) 1.450(8)	$C_{32} = C_{34}$	0.9800
$\Gamma_{A} = C_{2} \Gamma_{A}$	1.430(0) 1.485(11)	$C_{33} = C_{34}$	1.327(4)
C15A = C15A	1.405(11) 1 305(10)	C33—11551 C23—11551	0.9900
C15A = C20A	1.393(10) 1 405 (10)	$C_{33} = 11352$	1.504(4)
C16A = C17A	1.403(10) 1.401(10)	$C_{24} = C_{25}$	1.304 (4)
C17A = C17A	1.401(10) 1.265(8)	С34—Н341	0.9900
C17A = C18A	1.505 (8)	C34—H342	0.9900
C1/A— $H1/I$	0.9500	$C_{35} = C_{30}$	1.516 (4)
C18A—C19A	1.393 (8)	C35—H351	0.9900
C18A—H181	0.9500	C35—H352	0.9900
C19A—C20A	1.382 (9)	C30—H301	0.9800
C20A—H201	0.9500	C30—H302	0.9800
C21A—C22A	1.375 (10)	C36—H363	0.9800
C21A—C26A	1.399 (9)	$C_3/-C_{39^{n}}$	1.360 (5)
C22A—C23A	1.401 (11)	C37—C38	1.546 (6)
C22A—H221	0.9500	С37—Н371	0.9900

C23A—C24A	1.386 (11)	С37—Н372	0.9900
C23A—C28A	1.508 (11)	C38—C39	1.453 (5)
C24A—C25A	1.374 (11)	С38—Н381	0.9900
C24A—H241	0.9500	С38—Н382	0.9900
C25A—C26A	1.390 (9)	С39—Н391	0.9900
С25А—Н25А	0.9500	С39—Н392	0.9900
O1—Sn1—O2	53.93 (5)	C23A—C28A—H283	109.5
O1—Sn1—O4	82.76 (6)	H281—C28A—H283	109.5
O1—Sn1—O5A	135.8 (3)	H282—C28A—H283	109.5
O1—Sn1—O5B	135.6 (2)	C14B—O5B—Sn1	84.7 (9)
O1—Sn1—C29	103.65 (9)	C16B—O6B—H6B	109.5
O1—Sn1—C33	109.89 (9)	N4B—N3B—C19B	114.4 (5)
O2—Sn1—O4	136.44 (6)	N3B—N4B—C21B	112.5 (7)
O2—Sn1—O5A	167.5 (4)	O5B—C14B—O4	114.3 (11)
O2—Sn1—O5B	169.5 (3)	O5B-C14B-C15B	122.5 (10)
O2—Sn1—C29	92.83 (8)	O4—C14B—C15B	123.1 (8)
O2—Sn1—C33	87.56 (9)	C20B—C15B—C16B	119.4 (7)
O4—Sn1—O5A	53.3 (3)	C20B—C15B—C14B	120.1 (7)
O4—Sn1—O5B	52.9 (2)	C16B—C15B—C14B	120.5 (6)
O4—Sn1—C29	102.85 (9)	O6B—C16B—C17B	117.4 (6)
O4—Sn1—C33	105.25 (9)	O6B—C16B—C15B	122.8 (7)
O5A—Sn1—C29	91.6 (6)	C17B—C16B—C15B	119.7 (6)
O5A—Sn1—C33	81.4 (6)	C18B—C17B—C16B	120.2 (5)
O5B—Sn1—C29	88.7 (5)	C18B—C17B—H172	119.9
O5B—Sn1—C33	84.4 (5)	C16B—C17B—H172	119.9
C29—Sn1—C33	138.31 (10)	C17B—C18B—C19B	121.2 (5)
C1—O1—Sn1	105.49 (14)	C17B—C18B—H182	119.4
C1—O2—Sn1	81.66 (14)	C19B—C18B—H182	119.4
С3—О3—Н3	105 (3)	C20B—C19B—C18B	119.0 (5)
N2—N1—C6	114.6 (2)	C20B—C19B—N3B	125.8 (6)
N1—N2—C8	113.7 (2)	C18B—C19B—N3B	115.3 (5)
O2—C1—O1	118.9 (2)	C19B—C20B—C15B	120.5 (6)
O2—C1—C2	122.0 (2)	C19B—C20B—H202	119.7
O1—C1—C2	119.07 (19)	C15B—C20B—H202	119.7
C7—C2—C3	118.7 (2)	C22B—C21B—C26B	119.6 (6)
C7—C2—C1	120.8 (2)	C22B—C21B—N4B	115.5 (7)
C3—C2—C1	120.6 (2)	C26B—C21B—N4B	124.9 (6)
O3—C3—C4	117.3 (2)	C21B—C22B—C23B	121.1 (8)
O3—C3—C2	122.9 (2)	C21B—C22B—H222	119.5
C4—C3—C2	119.8 (2)	C23B—C22B—H222	119.5
C5—C4—C3	120.9 (2)	C24B—C23B—C22B	118.9 (8)
С5—С4—Н4	119.5	C24B—C23B—C28B	122.8 (8)
С3—С4—Н4	119.5	C22B—C23B—C28B	118.1 (9)
C4—C5—C6	120.0 (2)	C25B—C24B—C23B	120.4 (8)
C4—C5—H5	120.0	C25B—C24B—H242	119.8
С6—С5—Н5	120.0	C23B—C24B—H242	119.8
C7—C6—C5	119.5 (2)	C24B—C25B—C26B	120.9 (7)

C7—C6—N1	115.8 (2)	C24B—C25B—H252	119.6
C5—C6—N1	124.7 (2)	C26B—C25B—H252	119.6
C6—C7—C2	121.1 (2)	C21B—C26B—C25B	119.1 (6)
С6—С7—Н7	119.4	C21B—C26B—H263	120.5
С2—С7—Н7	119.4	C25B—C26B—H263	120.5
C9—C8—C13	120.1 (2)	C23B—C28B—H284	109.5
C9—C8—N2	115.6 (2)	C23B—C28B—H285	109.5
C13—C8—N2	124.3 (2)	H284—C28B—H285	109.5
C8—C9—C10	121.4 (2)	C23B—C28B—H286	109.5
С8—С9—Н9	119.3	H284—C28B—H286	109.5
С10—С9—Н9	119.3	H285—C28B—H286	109.5
C11—C10—C9	117.5 (2)	C30—C29—Sn1	110.95 (16)
C11—C10—C27	122.2 (2)	C30—C29—H291	109.4
C9-C10-C27	120.3(3)	Sn1—C29—H291	109.4
C_{12} C_{11} C_{10}	120.3(3) 121.3(2)	C_{30} C_{29} H_{292}	109.4
C_{12} C_{11} H_{11}	119.4	Sn1 - C29 - H292	109.4
$C_{12} = C_{11} = H_{11}$	110.4	$H_{201} C_{20} H_{202}$	109.4
$C_{10} = C_{11} = C_{12}$	117.4	11291 - C29 - 11292	100.0 112.1(2)
$C_{11} = C_{12} = C_{13}$	120.7 (5)	$C_{31} = C_{30} = C_{29}$	113.1 (2)
СП—СІ2—НІ2	119.0	C31—C30—H301	109.0
C13—C12—H12	119.6	C29—C30—H301	109.0
C12—C13—C8	119.0 (2)	C31—C30—H302	109.0
С12—С13—Н13	120.5	С29—С30—Н302	109.0
C8—C13—H13	120.5	H301—C30—H302	107.8
С10—С27—Н271	109.5	C32—C31—C30	111.2 (2)
С10—С27—Н272	109.5	С32—С31—Н311	109.4
H271—C27—H272	109.5	С30—С31—Н311	109.4
С10—С27—Н273	109.5	С32—С31—Н312	109.4
H271—C27—H273	109.5	С30—С31—Н312	109.4
H272—C27—H273	109.5	H311—C31—H312	108.0
C14B—O4—Sn1	108.0 (5)	C31—C32—H321	109.5
C14A—O4—Sn1	105.1 (6)	C31—C32—H322	109.5
C14A—O5A—Sn1	73.6 (12)	H321—C32—H322	109.5
С16А—О6А—Н6А	109.5	С31—С32—Н323	109.5
N4A—N3A—C19A	115.7 (9)	H321—C32—H323	109.5
N3A—N4A—C21A	113.1 (7)	H322—C32—H323	109.5
O5A—C14A—O4	128.0 (15)	C34—C33—Sn1	114.74 (18)
05A—C14A—C15A	121.5 (13)	С34—С33—Н331	108.6
04-C14A-C15A	110.0 (9)	Sn1—C33—H331	108.6
C_{20A} C_{15A} C_{16A}	119.0 (9)	C34—C33—H332	108.6
C_{20A} C_{15A} C_{14A}	120.6 (9)	Sn1_C33_H332	108.6
$C_{16A} = C_{15A} = C_{14A}$	120.0(9) 120.3(8)	H331 C33 H332	107.6
C10A - C15A - C14A	120.3(8)	11351 - C35 - 11352	107.0
O(A - C1(A - C15A))	110.3(6)	$C_{33} = C_{34} = C_{33}$	115.1 (2)
00A - C10A - C15A	123.1 (9)	C35—C34—H341	109.0
$C_{1/A}$ C_{10A} C_{10A} C_{10A}	120.0 (8)	$C_{33} - C_{34} - H_{341}$	109.0
C18A - C17A - C16A	118.7 (7)	C35—C34—H342	109.0
C18A—C17A—H171	120.6	C33—C34—H342	109.0
C16A—C17A—H171	120.7	H341—C34—H342	107.8
C17A—C18A—C19A	121.8 (6)	C34—C35—C36	112.8 (3)

C17A—C18A—H181	119.1	С34—С35—Н351	109.0
C19A—C18A—H181	119.1	С36—С35—Н351	109.0
C20A—C19A—C18A	119.7 (6)	С34—С35—Н352	109.0
C20A—C19A—N3A	114.9 (7)	С36—С35—Н352	109.0
C18A—C19A—N3A	125.4 (7)	H351—C35—H352	107.8
C19A—C20A—C15A	120.1 (8)	С35—С36—Н361	109.5
C19A—C20A—H201	119.9	С35—С36—Н362	109.5
C15A—C20A—H201	119.9	H361—C36—H362	109.5
C22A—C21A—C26A	121.5 (8)	С35—С36—Н363	109.5
C22A—C21A—N4A	123.1 (8)	H361—C36—H363	109.5
C26A—C21A—N4A	115.4 (7)	H362—C36—H363	109.5
C21A—C22A—C23A	120.2 (11)	C39 ⁱⁱ —C37—C38	106.1 (5)
$C_{21}A - C_{22}A - H_{22}I$	119.9	$C39^{ii}$ — $C37$ — $H371$	110.5
$C_{23A} - C_{22A} - H_{221}$	119.9	C38—C37—H371	110.5
C_{24A} C_{23A} C_{22A}	117.5 (10)	$C39^{ii}$ $C37$ $H372$	110.5
$C_{24A} = C_{23A} = C_{28A}$	1199(10)	$C_{38} - C_{37} - H_{372}$	110.5
$C_{22}A = C_{23}A = C_{28}A$	1221(11)	H_{371} C_{37} H_{372}	108.7
$C_{22} = C_{24} = C_{23}$	122.1(11) 122.8(10)	C_{39} C_{38} C_{37}	100.7 117 5 (4)
$C_{25A} = C_{24A} = H_{241}$	118.6	C_{39} C_{38} H_{381}	107.9
$C_{23A} = C_{24A} = H_{241}$	118.6	C37-C38-H381	107.9
$C_{25}^{24} = C_{25}^{25} = C_{26}^{26}$	110.6 (0)	C_{39} C_{38} H_{382}	107.9
$C_{24A} = C_{25A} = C_{26A}$	119.0 (9)	$C_{37} C_{38} H_{382}$	107.9
$C_{24A} = C_{25A} = H_{25A}$	120.2	H_{381} C_{38} H_{382}	107.2
C_{20} C	120.2 118.4(8)	C_{37ii} C_{30} C_{38}	107.2
$C_{25A} = C_{26A} = C_{21A}$	120.8	$C_{37ii} = C_{39} = C_{38}$	108.3
$C_{23}A = C_{20}A = H_{20}H_{20}$	120.8	$C_{37} = C_{39} = H_{391}$	108.3
$C_{21A} = C_{20A} = H_{201}$	109 5	$C_{37i} = C_{39} = H_{397}$	108.3
$C_{23A} = C_{26A} = H_{261}$	109.5	$C_{38} = C_{39} = H_{392}$	108.3
123A - 228A - 11282	109.5	$H_{201} = C_{20} = H_{202}$	107.4
H201—C20A—H202	109.3	n391—C39—n392	107.4
C6—N1—N2—C8	179.1 (2)	N3A—C19A—C20A—C15A	-179.4 (15)
Sn1—O2—C1—O1	-0.6 (2)	C16A—C15A—C20A—C19A	1 (2)
Sn1—O2—C1—C2	178.0 (2)	C14A—C15A—C20A—C19A	-179 (2)
Sn1—O1—C1—O2	0.7 (3)	N3A—N4A—C21A—C22A	0.5 (16)
Sn1—O1—C1—C2	-177.90 (18)	N3A—N4A—C21A—C26A	-178.1 (10)
O2—C1—C2—C7	176.8 (2)	C26A—C21A—C22A—C23A	-3 (3)
O1—C1—C2—C7	-4.6 (4)	N4A—C21A—C22A—C23A	179 (2)
O2—C1—C2—C3	-2.9(4)	C21A—C22A—C23A—C24A	3 (5)
O1—C1—C2—C3	175.7 (2)	C21A—C22A—C23A—C28A	175 (2)
C7—C2—C3—O3	-178.8(2)	C22A—C23A—C24A—C25A	-2(4)
C1—C2—C3—O3	0.9 (4)	C28A—C23A—C24A—C25A	-174(2)
C7—C2—C3—C4	2.0 (4)	C23A—C24A—C25A—C26A	1 (2)
C1-C2-C3-C4	-178.3(2)	C24A—C25A—C26A—C21A	-0.3(14)
03-C3-C4-C5	179.6 (2)	C22A—C21A—C26A—C25A	1.3 (15)
$C_2 - C_3 - C_4 - C_5$	-1.1 (4)	N4A-C21A-C26A-C25A	179.9 (7)
C3—C4—C5—C6	-0.6(4)	C19B— $N3B$ — $N4B$ — $C21B$	179.3 (7)
C4—C5—C6—C7	1.3 (4)	Sn1-O5B-C14B-O4	-2.1(19)
C4—C5—C6—N1	-179.3 (2)	Sn1-O5B-C14B-C15B	-180(2)
			100 (2)

N2—N1—C6—C7	179.8 (2)	Sn1—O4—C14B—O5B	3 (2)
N2—N1—C6—C5	0.4 (4)	Sn1—O4—C14B—C15B	-179.5 (19)
C5—C6—C7—C2	-0.3 (4)	O5B-C14B-C15B-C20B	-179 (2)
N1—C6—C7—C2	-179.8 (2)	O4—C14B—C15B—C20B	4 (3)
C3—C2—C7—C6	-1.3 (4)	O5B-C14B-C15B-C16B	-2 (3)
C1—C2—C7—C6	179.0 (2)	O4—C14B—C15B—C16B	-179.1 (18)
N1—N2—C8—C9	-176.3 (2)	C20B—C15B—C16B—O6B	179.6 (12)
N1—N2—C8—C13	3.3 (4)	C14B—C15B—C16B—O6B	2 (2)
C13—C8—C9—C10	-0.3 (4)	C20B—C15B—C16B—C17B	0.6 (18)
N2-C8-C9-C10	179.3 (2)	C14B—C15B—C16B—C17B	-176.8 (16)
C8—C9—C10—C11	0.5 (4)	O6B-C16B-C17B-C18B	-178.2 (8)
C8—C9—C10—C27	-179.5 (3)	C15B—C16B—C17B—C18B	0.8 (13)
C9-C10-C11-C12	-1.1 (4)	C16B—C17B—C18B—C19B	-0.7 (9)
C27—C10—C11—C12	178.9 (3)	C17B—C18B—C19B—C20B	-0.9 (9)
C10-C11-C12-C13	1.5 (4)	C17B—C18B—C19B—N3B	179.5 (5)
C11—C12—C13—C8	-1.2 (4)	N4B-N3B-C19B-C20B	4.0 (10)
C9—C8—C13—C12	0.6 (4)	N4B—N3B—C19B—C18B	-176.5 (8)
N2-C8-C13-C12	-178.9 (2)	C18B—C19B—C20B—C15B	2.3 (12)
C19A—N3A—N4A—C21A	-179.0 (10)	N3B-C19B-C20B-C15B	-178.1 (9)
Sn1—O5A—C14A—O4	1 (3)	C16B—C15B—C20B—C19B	-2.2 (17)
Sn1—O5A—C14A—C15A	173 (3)	C14B—C15B—C20B—C19B	175.2 (16)
Sn1—O4—C14A—O5A	-1 (4)	N3B—N4B—C21B—C22B	-179.9 (10)
Sn1—O4—C14A—C15A	-174.0 (19)	N3B—N4B—C21B—C26B	-2.0 (14)
O5A—C14A—C15A—C20A	-179 (3)	C26B—C21B—C22B—C23B	3 (2)
O4—C14A—C15A—C20A	-6 (4)	N4B-C21B-C22B-C23B	-179 (2)
O5A—C14A—C15A—C16A	1 (4)	C21B—C22B—C23B—C24B	-3 (4)
O4—C14A—C15A—C16A	174 (2)	C21B—C22B—C23B—C28B	-178.4 (15)
C20A—C15A—C16A—O6A	177.7 (15)	C22B—C23B—C24B—C25B	2 (3)
C14A—C15A—C16A—O6A	-3 (3)	C28B—C23B—C24B—C25B	177.4 (18)
C20A—C15A—C16A—C17A	-2 (2)	C23B—C24B—C25B—C26B	-1.3 (19)
C14A—C15A—C16A—C17A	177 (2)	C22B—C21B—C26B—C25B	-1.8 (11)
O6A—C16A—C17A—C18A	-177.7 (10)	N4B—C21B—C26B—C25B	-179.6 (8)
C15A—C16A—C17A—C18A	2.4 (18)	C24B—C25B—C26B—C21B	1.1 (11)
C16A—C17A—C18A—C19A	-0.4 (12)	Sn1-C29-C30-C31	-179.94 (18)
C17A—C18A—C19A—C20A	-1.4 (11)	C29—C30—C31—C32	179.6 (2)
C17A—C18A—C19A—N3A	179.4 (11)	Sn1—C33—C34—C35	-174.66 (19)
N4A—N3A—C19A—C20A	177.4 (11)	C33—C34—C35—C36	-174.4 (2)
N4A—N3A—C19A—C18A	-3.5 (19)	C39 ⁱⁱ —C37—C38—C39	-48.3 (6)
C18A—C19A—C20A—C15A	1.4 (16)	C37—C38—C39—C37 ⁱⁱ	53.0 (7)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*; (ii) -*x*+2, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O3—H3…O2	0.78 (3)	1.91 (3)	2.623 (3)	153 (3)
O3—H3···O2 ⁱ	0.78 (3)	2.44 (3)	2.872 (3)	117 (3)

Acta Cryst. (2021). C77, 209-220

O6A—H6A····O5A	0.84	1.90	2.62 (3)	144
O6 <i>B</i> —H6 <i>B</i> ···O5 <i>B</i>	0.84	1.90	2.64 (2)	146

F(000) = 1864

 $\theta = 2.0 - 30.0^{\circ}$

 $\mu = 2.90 \text{ mm}^{-1}$

 $0.25\times0.15\times0.10~mm$

T = 160 KTablet, orange

 $D_{\rm x} = 1.686 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 89697 reflections

Symmetry code: (i) -x+2, -y+1, -z.

Dibenzylbis{(E)-5-[(4-bromophenyl)diazenyl]-2-hydroxybenzoato}tin(IV) (II)

Crystal data

 $[Sn(C_7H_7)_2(C_{13}H_8BrN_2O_3)_2]$ $M_r = 941.19$ Monoclinic, $P2_1/n$ a = 13.6816 (1) Å b = 12.5767 (1) Å c = 22.5401 (2) Å $\beta = 107.0174$ (6)° V = 3708.65 (5) Å³ Z = 4

Data collection

07473 measured reflections
0845 independent reflections
598 reflections with $I > 2\sigma(I)$
$n_{\rm int} = 0.059$
$_{\rm max} = 30.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
=−19→19
$=-17 \rightarrow 16$
$=-31 \rightarrow 31$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.032$	and constrained refinement
$wR(F^2) = 0.076$	$w = 1/[\sigma^2(F_o^2) + (0.0342P)^2 + 2.2611P]$
<i>S</i> = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
10845 reflections	$(\Delta/\sigma)_{ m max} = 0.002$
487 parameters	$\Delta \rho_{\rm max} = 0.69 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.87 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL2018 (Sheldrick
direct methods	2015), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00044 (10)
map	

Special details

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: benzene Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: on a glass fibre Mosaicity (deg.): 0.497 (1) Frames collected: 621 Seconds exposure per frame: 42 Degrees rotation per frame: 1.4 Crystal-detector distance (mm): 33.0 Client: Tushar Basu Sample code: TSBB-116 (L0503)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	V	Z	$U_{\rm iso}^*/U_{\rm eq}$	
Sn1	1 12288 (2)	0 92949 (2)	0 21744 (2)	0.02364 (5)	
Br1	0.35337(2)	0.92949(2) 0.38616(2)	-0.16642(2)	0.02504(3) 0.04522(8)	
Br ²	0.33337(2) 0.24024(2)	1,11571(2)	-0.12676(2)	0.04322(0) 0.04297(7)	
01	1.03424(2)	0.81362(11)	0.12070(2) 0.15702(7)	0.04277(7)	
0^{1}	1.03424(11) 1.18264(11)	0.81302(11) 0.73803(12)	0.13792(7) 0.20301(7)	0.0207(3)	
02	1.10204(11) 1.21624(12)	0.73803(12) 0.54381(14)	0.20501(7) 0.17681(8)	0.0293(3) 0.0341(4)	
U3	1.21024(12) 1.227(2)	0.54381(14)	0.17081(8) 0.1806(14)	0.0341(4) 0.042(0)*	
П3 04	1.227(2)	0.000(2)	0.1690(14) 0.17848(7)	$0.043(9)^{\circ}$	
04	0.99008 (11)	1.02003(12) 1.12542(12)	0.17848(7)	0.0287(3)	
05	1.10390(12)	1.12542(12) 1.22(20(15))	0.23902(7)	0.0330(4)	
00	1.00615 (14)	1.32629 (15)	0.24788 (9)	0.0413(4)	
HO	1.095 (2)	1.273(3)	0.2523 (14)	0.048 (9)*	
NI	0.81504 (14)	0.53194 (15)	0.02420 (8)	0.0293(4)	
N2	0.79016 (14)	0.44594 (15)	-0.00499 (9)	0.0312 (4)	
N3	0.67967 (13)	1.26118 (15)	0.08248 (8)	0.0290 (4)	
N4	0.66500 (14)	1.17649 (15)	0.05176 (9)	0.0304 (4)	
Cl	1.09302 (15)	0.73155 (16)	0.16653 (9)	0.0241 (4)	
C2	1.05433 (16)	0.63236 (16)	0.13312 (9)	0.0246 (4)	
C3	1.11879 (16)	0.54387 (17)	0.13959 (10)	0.0275 (4)	
C4	1.08292 (18)	0.45075 (18)	0.10642 (11)	0.0336 (5)	
H4	1.126847	0.390942	0.110629	0.040*	
C5	0.98481 (18)	0.44523 (18)	0.06788 (11)	0.0326 (5)	
H5	0.961411	0.381945	0.045143	0.039*	
C6	0.91881 (16)	0.53244 (18)	0.06183 (10)	0.0283 (4)	
C7	0.95369 (16)	0.62502 (16)	0.09410 (9)	0.0261 (4)	
H7	0.909103	0.684281	0.089839	0.031*	
C8	0.68605 (16)	0.43989 (17)	-0.04158 (10)	0.0282 (4)	
C9	0.66170 (19)	0.35179 (19)	-0.08038 (11)	0.0353 (5)	
H9	0.713574	0.302189	-0.081361	0.042*	
C10	0.56283 (18)	0.33562 (19)	-0.11754 (11)	0.0347 (5)	
H10	0.546201	0.275366	-0.144009	0.042*	
C11	0.48879 (17)	0.40869 (18)	-0.11544 (10)	0.0312 (5)	
C12	0.51050 (17)	0.49732 (18)	-0.07683 (10)	0.0316 (5)	
H12	0.458157	0.546255	-0.075751	0.038*	
C13	0.61031 (17)	0.51274 (18)	-0.03988 (10)	0.0313 (5)	
H13	0.626884	0.573038	-0.013445	0.038*	
C14	1.01655 (16)	1.11307 (17)	0.20191 (10)	0.0270 (4)	
C15	0.94456 (15)	1.20272 (16)	0.18346 (9)	0.0246 (4)	
C16	0.97321 (17)	1.30496 (17)	0.20791 (10)	0.0295 (4)	
C17	0.90408 (19)	1.38837 (18)	0.19048 (11)	0.0348 (5)	
H17	0.922534	1.457432	0.207046	0.042*	
C18	0.80892 (18)	1.37121 (18)	0.14927 (11)	0.0312 (5)	
H18	0.762175	1.428724	0.137696	0.037*	
C19	0.78022 (16)	1.27034 (17)	0.12426 (9)	0.0258 (4)	
C20	0.84821 (15)	1.18649 (17)	0.14157 (9)	0.0252 (4)	
H20	0.829109	1.117652	0.124835	0.030*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C21	0.56306 (16)	1.16501 (18)	0.01224 (10)	0.0289 (4)
C22	0.47863 (17)	1.21300 (19)	0.02333 (11)	0.0338 (5)
H22	0.487192	1.256449	0.058965	0.041*
C23	0.38202 (18)	1.1977 (2)	-0.01744 (12)	0.0371 (5)
H23	0.324028	1.230242	-0.010048	0.045*
C24	0.37124 (17)	1.13422 (18)	-0.06909 (11)	0.0326 (5)
C25	0.45375 (19)	1.0834 (2)	-0.07959 (11)	0.0382 (5)
H25	0.444656	1.038832	-0.114839	0.046*
C26	0.55027 (19)	1.0977 (2)	-0.03824 (12)	0.0364 (5)
H26	0.607427	1.061489	-0.044466	0.044*
C27	1.23394 (17)	0.9824 (2)	0.17457 (11)	0.0345 (5)
H271	1.274498	1.040539	0.199706	0.041*
H272	1.281210	0.923037	0.174009	0.041*
C28	1.18727 (16)	1.02131 (18)	0.10939 (10)	0.0289 (4)
C29	1.15565 (19)	1.1265 (2)	0.09827 (11)	0.0367 (5)
H29	1.163412	1.173705	0.132262	0.044*
C30	1.1131 (2)	1.1634 (2)	0.03845 (12)	0.0470 (7)
H30	1.091423	1.235306	0.031672	0.056*
C31	1.1021 (2)	1.0965 (3)	-0.01115 (13)	0.0511 (7)
H31	1.073282	1.122162	-0.052203	0.061*
C32	1.1324 (2)	0.9933 (3)	-0.00152 (13)	0.0537 (8)
H32	1.124292	0.946947	-0.035900	0.064*
C33	1.1756 (2)	0.9551 (2)	0.05899 (13)	0.0436 (6)
H33	1.197067	0.883071	0.065309	0.052*
C34	1.11013 (17)	0.88479 (18)	0.30603 (10)	0.0295 (5)
H341	1.177731	0.861067	0.332684	0.035*
H342	1.089104	0.947379	0.325971	0.035*
C35	1.03402 (16)	0.79736 (17)	0.30103 (9)	0.0262 (4)
C36	1.06646 (18)	0.69271 (18)	0.31317 (11)	0.0316 (5)
H36	1.137571	0.677401	0.326086	0.038*
C37	0.9968 (2)	0.6103 (2)	0.30672 (12)	0.0387 (5)
H37	1.020131	0.539084	0.314606	0.046*
C38	0.89273 (19)	0.6322 (2)	0.28872 (11)	0.0376 (5)
H38	0.844633	0.576106	0.284560	0.045*
C39	0.85972 (18)	0.7355 (2)	0.27695 (10)	0.0355 (5)
H39	0.788575	0.750619	0.264705	0.043*
C40	0.92922 (17)	0.81773 (19)	0.28278 (10)	0.0308 (5)
H40	0.905311	0.888640	0.274277	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.02239 (7)	0.01846 (7)	0.02550 (7)	-0.00111 (5)	-0.00014 (5)	0.00225 (5)
Br1	0.03174 (13)	0.03595 (14)	0.05510 (16)	-0.00582 (10)	-0.00740 (11)	-0.00544 (11)
Br2	0.03208 (13)	0.04611 (16)	0.04141 (14)	-0.00977 (11)	-0.00380 (10)	0.00158 (11)
01	0.0273 (7)	0.0195 (7)	0.0282 (7)	0.0003 (6)	0.0004 (6)	-0.0008 (6)
02	0.0267 (7)	0.0252 (8)	0.0304 (8)	-0.0004 (6)	-0.0010 (6)	-0.0007 (6)
03	0.0263 (8)	0.0271 (9)	0.0392 (9)	0.0044 (7)	-0.0054 (7)	-0.0047 (7)

Acta Cryst. (2021). C77, 209-220

O4	0.0254 (7)	0.0202 (7)	0.0346 (8)	0.0010 (6)	-0.0005(6)	-0.0005(6)
05	0.0284 (8)	0.0264 (8)	0.0360 (8)	-0.0014 (6)	-0.0063 (6)	0.0032 (6)
O6	0.0376 (9)	0.0239 (9)	0.0475 (10)	-0.0030 (7)	-0.0112 (8)	-0.0047 (7)
N1	0.0283 (9)	0.0261 (9)	0.0290 (9)	-0.0018(7)	0.0013 (7)	-0.0022(7)
N2	0.0278 (9)	0.0276 (10)	0.0329 (10)	-0.0019 (7)	0.0007 (7)	-0.0043(7)
N3	0.0253 (9)	0.0277 (10)	0.0311 (9)	0.0030 (7)	0.0038 (7)	0.0010 (7)
N4	0.0270 (9)	0.0289 (10)	0.0316 (9)	0.0032 (7)	0.0028 (7)	-0.0013(7)
C1	0.0254 (10)	0.0224 (10)	0.0225 (9)	0.0000 (8)	0.0041 (7)	-0.0003(7)
C2	0.0259 (10)	0.0215 (10)	0.0238 (9)	-0.0012(8)	0.0032 (8)	0.0011 (7)
C3	0.0235 (10)	0.0259 (11)	0.0294 (10)	0.0019 (8)	0.0020 (8)	0.0003 (8)
C4	0.0292 (11)	0.0256 (12)	0.0416 (13)	0.0052 (9)	0.0033 (9)	-0.0048 (9)
C5	0.0322 (11)	0.0255 (11)	0.0355 (12)	0.0004 (9)	0.0028 (9)	-0.0079 (9)
C6	0.0254 (10)	0.0280 (11)	0.0276 (10)	-0.0003 (8)	0.0019 (8)	-0.0004(8)
C7	0.0265 (10)	0.0214 (10)	0.0270 (10)	0.0012 (8)	0.0024 (8)	0.0013 (8)
C8	0.0276 (10)	0.0247 (11)	0.0280 (10)	-0.0039 (8)	0.0016 (8)	0.0004 (8)
C9	0.0357 (12)	0.0250 (11)	0.0402 (13)	0.0013 (9)	0.0035 (10)	-0.0042(9)
C10	0.0354 (12)	0.0247 (11)	0.0372 (12)	-0.0061 (9)	0.0000 (10)	-0.0049 (9)
C11	0.0275 (11)	0.0288 (12)	0.0319 (11)	-0.0066 (9)	0.0001 (9)	0.0029 (9)
C12	0.0291 (11)	0.0296 (12)	0.0340 (11)	-0.0008(9)	0.0059 (9)	-0.0014 (9)
C13	0.0311 (11)	0.0276 (12)	0.0326 (11)	-0.0027(9)	0.0051 (9)	-0.0046 (9)
C14	0.0276 (10)	0.0213 (10)	0.0282 (10)	-0.0017 (8)	0.0018 (8)	0.0025 (8)
C15	0.0261 (10)	0.0199 (10)	0.0245 (9)	-0.0011 (8)	0.0026 (8)	-0.0001 (7)
C16	0.0304 (11)	0.0244 (11)	0.0284 (10)	-0.0034 (9)	0.0005 (8)	-0.0010 (8)
C17	0.0417 (13)	0.0190 (10)	0.0390 (12)	-0.0016 (9)	0.0044 (10)	-0.0053 (9)
C18	0.0332 (11)	0.0230 (11)	0.0362 (12)	0.0051 (9)	0.0082 (9)	-0.0004 (9)
C19	0.0253 (10)	0.0270 (11)	0.0230 (9)	0.0016 (8)	0.0035 (8)	-0.0001 (8)
C20	0.0262 (10)	0.0209 (10)	0.0261 (10)	0.0000 (8)	0.0039 (8)	-0.0007(8)
C21	0.0271 (10)	0.0262 (11)	0.0293 (11)	-0.0006 (9)	0.0020 (8)	0.0004 (8)
C22	0.0307 (11)	0.0328 (12)	0.0350 (12)	0.0011 (9)	0.0048 (9)	-0.0064 (9)
C23	0.0265 (11)	0.0364 (13)	0.0451 (14)	0.0014 (10)	0.0051 (10)	-0.0054 (10)
C24	0.0277 (11)	0.0296 (12)	0.0339 (11)	-0.0059 (9)	-0.0010 (9)	0.0026 (9)
C25	0.0392 (13)	0.0402 (14)	0.0330 (12)	-0.0060 (11)	0.0071 (10)	-0.0088 (10)
C26	0.0324 (12)	0.0358 (13)	0.0410 (13)	0.0004 (10)	0.0105 (10)	-0.0084 (10)
C27	0.0256 (11)	0.0349 (13)	0.0386 (12)	-0.0025 (9)	0.0024 (9)	0.0129 (10)
C28	0.0229 (10)	0.0300 (12)	0.0331 (11)	0.0002 (9)	0.0069 (8)	0.0052 (9)
C29	0.0399 (13)	0.0337 (13)	0.0346 (12)	0.0034 (10)	0.0080 (10)	0.0069 (10)
C30	0.0483 (15)	0.0506 (17)	0.0422 (14)	0.0141 (13)	0.0135 (12)	0.0193 (12)
C31	0.0479 (16)	0.070 (2)	0.0322 (13)	0.0005 (14)	0.0074 (11)	0.0115 (13)
C32	0.0634 (19)	0.066 (2)	0.0359 (14)	-0.0111 (16)	0.0215 (13)	-0.0134 (13)
C33	0.0518 (16)	0.0363 (14)	0.0482 (15)	0.0037 (12)	0.0234 (13)	-0.0030 (11)
C34	0.0322 (11)	0.0263 (11)	0.0261 (10)	-0.0051 (9)	0.0024 (8)	-0.0019 (8)
C35	0.0296 (10)	0.0254 (11)	0.0220 (9)	-0.0021 (8)	0.0050 (8)	-0.0015 (8)
C36	0.0305 (11)	0.0281 (11)	0.0357 (12)	0.0009 (9)	0.0090 (9)	0.0041 (9)
C37	0.0447 (14)	0.0257 (12)	0.0461 (14)	-0.0028 (10)	0.0141 (11)	0.0042 (10)
C38	0.0384 (13)	0.0363 (13)	0.0392 (13)	-0.0131 (10)	0.0134 (10)	-0.0024 (10)
C39	0.0275 (11)	0.0452 (15)	0.0329 (12)	-0.0034 (10)	0.0072 (9)	-0.0028 (10)
C40	0.0315 (11)	0.0279 (11)	0.0309 (11)	0.0010 (9)	0.0060 (9)	-0.0006 (9)

Acta Cryst. (2021). C77, 209-220

Geometric parameters (Å, °)

Sn1—O1	2.1077 (14)	C16—C17	1.390 (3)
Sn1—O2	2.5939 (15)	C17—C18	1.377 (3)
Sn1—O4	2.1100 (14)	C17—H17	0.9500
Sn1—O5	2.5426 (16)	C18—C19	1.397 (3)
Sn1—C27	2.132 (2)	C18—H18	0.9500
Sn1—C34	2.130 (2)	C19—C20	1.385 (3)
Sn1—O3 ⁱ	3.0858 (16)	C20—H20	0.9500
Br1—C11	1.894 (2)	C21—C26	1.388 (3)
Br2—C24	1.895 (2)	C21—C22	1.389 (3)
01—C1	1.288 (2)	C22—C23	1.385 (3)
O2—C1	1.263 (2)	C22—H22	0.9500
O3—C3	1.352 (3)	C23—C24	1.383 (3)
O3—H3	0.77 (3)	С23—Н23	0.9500
O4—C14	1.284 (3)	C24—C25	1.377 (4)
O5—C14	1.257 (2)	C25—C26	1.387 (3)
O6—C16	1.353 (3)	C25—H25	0.9500
O6—H6	0.76 (3)	C26—H26	0.9500
N1—N2	1.260 (3)	C27—C28	1.502 (3)
N1—C6	1.425 (3)	C27—H271	0.9900
N2—C8	1.424 (3)	С27—Н272	0.9900
N3—N4	1.254 (3)	C28—C33	1.379 (3)
N3—C19	1.426 (3)	C28—C29	1.392 (3)
N4—C21	1.425 (3)	C29—C30	1.383 (3)
C1—C2	1.473 (3)	С29—Н29	0.9500
C2—C3	1.401 (3)	C30—C31	1.372 (4)
C2—C7	1.403 (3)	С30—Н30	0.9500
C3—C4	1.399 (3)	C31—C32	1.360 (5)
C4—C5	1.371 (3)	C31—H31	0.9500
C4—H4	0.9500	C32—C33	1.403 (4)
C5—C6	1.402 (3)	С32—Н32	0.9500
С5—Н5	0.9500	С33—Н33	0.9500
C6—C7	1.382 (3)	C34—C35	1.496 (3)
С7—Н7	0.9500	C34—H341	0.9900
C8—C9	1.390 (3)	C34—H342	0.9900
C8—C13	1.392 (3)	C35—C36	1.390 (3)
C9—C10	1.382 (3)	C35—C40	1.395 (3)
С9—Н9	0.9500	C36—C37	1.387 (3)
C10—C11	1.379 (3)	С36—Н36	0.9500
C10—H10	0.9500	C37—C38	1.389 (4)
C11—C12	1.392 (3)	С37—Н37	0.9500
C12—C13	1.389 (3)	C38—C39	1.376 (4)
C12—H12	0.9500	C38—H38	0.9500
C13—H13	0.9500	C39—C40	1.385 (3)
C14—C15	1.475 (3)	С39—Н39	0.9500
C15—C20	1.394 (3)	C40—H40	0.9500
C15—C16	1.409 (3)		

O1—Sn1—O2	54.69 (5)	C17—C16—C15	119.34 (19)
O1—Sn1—O4	81.12 (6)	C18—C17—C16	120.2 (2)
O1—Sn1—O5	136.25 (5)	C18—C17—H17	119.9
O1—Sn1—C27	106.31 (8)	C16—C17—H17	119.9
O1—Sn1—C34	102.97 (7)	C17—C18—C19	120.9 (2)
O2—Sn1—O4	135.78 (5)	C17—C18—H18	119.6
O2—Sn1—O5	168.06 (5)	C19—C18—H18	119.6
O2—Sn1—C27	86.57 (8)	C20-C19-C18	119.44 (19)
O2—Sn1—C34	89.30 (7)	C20-C19-N3	124.27 (19)
O4—Sn1—O5	55.27 (5)	C18—C19—N3	116.27 (19)
O4—Sn1—C27	106.44 (7)	C19—C20—C15	120.24 (19)
O4—Sn1—C34	103.69 (8)	С19—С20—Н20	119.9
O5—Sn1—C27	85.08 (8)	С15—С20—Н20	119.9
O5—Sn1—C34	91.74 (7)	C26—C21—C22	120.0 (2)
C27—Sn1—C34	140.54 (9)	C26—C21—N4	116.1 (2)
O1—Sn1—O3 ⁱ	164.01 (5)	C22—C21—N4	123.8 (2)
O4—Sn1—O3 ⁱ	113.64 (5)	C23—C22—C21	120.2 (2)
C34—Sn1—O3 ⁱ	68.56 (7)	С23—С22—Н22	119.9
C27—Sn1—O3 ⁱ	76.28 (7)	C21—C22—H22	119.9
O5—Sn1—O3 ⁱ	59.16 (5)	C24—C23—C22	119.0 (2)
O2—Sn1—O3 ⁱ	110.47 (5)	С24—С23—Н23	120.5
C1—O1—Sn1	103.93 (12)	С22—С23—Н23	120.5
C1—O2—Sn1	81.95 (12)	C25—C24—C23	121.5 (2)
C3—O3—Sn1 ⁱⁱ	146.18 (14)	C25—C24—Br2	118.91 (18)
С3—О3—Н3	106 (2)	C23—C24—Br2	119.64 (18)
Sn1 ⁱⁱ —O3—H3	97 (2)	C24—C25—C26	119.4 (2)
C14—O4—Sn1	102.46 (12)	С24—С25—Н25	120.3
C14—O5—Sn1	83.04 (12)	С26—С25—Н25	120.3
С16—О6—Н6	105 (2)	C25—C26—C21	119.8 (2)
N2—N1—C6	112.60 (18)	C25—C26—H26	120.1
N1—N2—C8	114.82 (18)	C21—C26—H26	120.1
N4—N3—C19	113.63 (18)	C28—C27—Sn1	112.94 (14)
N3—N4—C21	113.59 (18)	C28—C27—H271	109.0
O2—C1—O1	119.38 (18)	Sn1—C27—H271	109.0
O2—C1—C2	121.50 (18)	C28—C27—H272	109.0
O1—C1—C2	119.12 (17)	Sn1—C27—H272	109.0
C3—C2—C7	119.04 (19)	H271—C27—H272	107.8
C3—C2—C1	119.90 (18)	C33—C28—C29	118.1 (2)
C7—C2—C1	121.06 (19)	C33—C28—C27	121.5 (2)
O3—C3—C4	117.35 (19)	C29—C28—C27	120.4 (2)
O3—C3—C2	122.80 (19)	C30—C29—C28	120.9 (2)
C4—C3—C2	119.85 (19)	С30—С29—Н29	119.5
C5—C4—C3	120.4 (2)	С28—С29—Н29	119.5
C5—C4—H4	119.8	C31—C30—C29	120.2 (3)
C3—C4—H4	119.8	C31—C30—H30	119.9
C4—C5—C6	120.4 (2)	С29—С30—Н30	119.9
C4—C5—H5	119.8	C32—C31—C30	120.0 (3)

С6—С5—Н5	119.8	C32—C31—H31	120.0
C7—C6—C5	119.6 (2)	C30—C31—H31	120.0
C7—C6—N1	116.58 (19)	C31—C32—C33	120.3 (3)
C5—C6—N1	123.8 (2)	С31—С32—Н32	119.9
C6—C7—C2	120.65 (19)	С33—С32—Н32	119.9
С6—С7—Н7	119.7	C28—C33—C32	120.5 (3)
С2—С7—Н7	119.7	С28—С33—Н33	119.7
C9—C8—C13	119.9 (2)	С32—С33—Н33	119.7
C9—C8—N2	115.0 (2)	C35—C34—Sn1	111.69 (14)
C13—C8—N2	125.13 (19)	C35—C34—H341	109.3
C10—C9—C8	120.7 (2)	Sn1—C34—H341	109.3
С10—С9—Н9	119.7	C35—C34—H342	109.3
С8—С9—Н9	119.7	Sn1—C34—H342	109.3
C11—C10—C9	118.7 (2)	H341—C34—H342	107.9
C11—C10—H10	120.7	$C_{36} - C_{35} - C_{40}$	1183(2)
C9-C10-H10	120.7	$C_{36} = C_{35} = C_{34}$	1204(2)
C10-C11-C12	122.1(2)	C40 - C35 - C34	120.1(2) 121.3(2)
C10-C11-Br1	122.1(2) 118 52 (17)	C_{37} C_{36} C_{35}	121.3(2) 121.1(2)
C12— $C11$ — $Br1$	110.32(17) 110.42(18)	C_{37} C_{36} H_{36}	110 4
$C_{12} = C_{11} = D_{11}$	119.42(10) 118.6(2)	C_{35} C_{36} H_{36}	119.4
$C_{13} = C_{12} = C_{11}$	118.0 (2)	$C_{35} = C_{30} = 1150$	119.4
$C_{11} = C_{12} = H_{12}$	120.7	$C_{30} = C_{37} = C_{38}$	119.8 (2)
$C_{12} = C_{12} = C_{12}$	120.7 120.0(2)	$C_{30} = C_{37} = H_{37}$	120.1
$C_{12} = C_{13} = C_{8}$	120.0 (2)	$C_{30} = C_{37} = C_{37}$	120.1
$C_{12} - C_{13} - H_{13}$	120.0	$C_{39} = C_{38} = C_{37}$	119.0 (2)
$C_{0} - C_{13} - H_{13}$	120.0	$C_{39} = C_{30} = H_{30}$	120.2
05 - C14 - C15	119.19(19) 121.27(10)	$C_{3}^{2} = C_{3}^{2} = C_{4}^{2}$	120.2
03 - C14 - C15	121.37(19) 110.44(18)	$C_{30} = C_{30} = C_{40}$	120.0(2)
04-014-015	119.44(10)	$C_{30} = C_{39} = H_{39}$	119.7
$C_{20} = C_{13} = C_{10}$	119.90(19) 120.02(19)	$C_{40} = C_{39} = H_{39}$	119.7
$C_{20} = C_{15} = C_{14}$	120.02(18)	$C_{39} = C_{40} = C_{33}$	120.6 (2)
C16 - C15 - C14	120.08 (18)	$C_{39} - C_{40} - H_{40}$	119.7
06-016-017	117.9 (2)	C35—C40—H40	119.7
06-016-015	122.8 (2)		
CC NI NO CP	177.92(10)	C20 C15 C1(O(170.9(2)
$C_0 N_1 N_2 C_8$	1/7.82(18)	$C_{20} = C_{13} = C_{16} = 06$	-1/8.8(2)
C19 - N3 - N4 - C21	1/7.10(18)	C14 - C15 - C16 - O6	0.9(3)
sn1 = 02 = 01	1.81 (17)	$C_{20} = C_{15} = C_{16} = C_{17}$	0.9(3)
Sn1 = 02 = 01 = 02	-1/8.70(19)	C14 - C15 - C16 - C17	-1/9.4(2)
Sn1 = O1 = O1 = O2	-2.3(2)	06-016-017-018	1/9.1 (2)
SnI = OI = CI = C2	1/8.23 (15)	C15-C16-C17-C18	-0.6 (4)
02-01-02-03	-2.6(3)	C16—C17—C18—C19	-0.1 (4)
01	176.92 (19)	C17 - C18 - C19 - C20	0.5 (3)
02	178.11 (19)	C17—C18—C19—N3	179.5 (2)
01 - C1 - C2 - C7	-2.4 (3)	N4—N3—C19—C20	-15.1 (3)
Sn1 ⁿ —O3—C3—C4	-52.7 (3)	N4—N3—C19—C18	166.0 (2)
Sn1"	127.6 (2)	C18—C19—C20—C15	-0.2 (3)
C7—C2—C3—O3	-179.1 (2)	N3—C19—C20—C15	-179.07 (19)
C1—C2—C3—O3	1.6 (3)	C16—C15—C20—C19	-0.5 (3)

C7—C2—C3—C4	1.2 (3)	C14—C15—C20—C19	179.8 (2)
C1—C2—C3—C4	-178.1 (2)	N3—N4—C21—C26	156.8 (2)
O3—C3—C4—C5	179.9 (2)	N3—N4—C21—C22	-26.1 (3)
C2—C3—C4—C5	-0.4 (4)	C26—C21—C22—C23	-2.9 (4)
C3—C4—C5—C6	-0.8(4)	N4-C21-C22-C23	-180.0 (2)
C4—C5—C6—C7	1.2 (4)	C21—C22—C23—C24	-0.1 (4)
C4—C5—C6—N1	-178.1 (2)	C22—C23—C24—C25	2.2 (4)
N2—N1—C6—C7	178.1 (2)	C22—C23—C24—Br2	-178.11 (19)
N2—N1—C6—C5	-2.6 (3)	C23—C24—C25—C26	-1.4 (4)
C5—C6—C7—C2	-0.3 (3)	Br2-C24-C25-C26	179.0 (2)
N1—C6—C7—C2	178.98 (19)	C24—C25—C26—C21	-1.6 (4)
C3—C2—C7—C6	-0.8 (3)	C22—C21—C26—C25	3.8 (4)
C1—C2—C7—C6	178.5 (2)	N4—C21—C26—C25	-179.0 (2)
N1—N2—C8—C9	171.5 (2)	Sn1—C27—C28—C33	-94.1 (2)
N1—N2—C8—C13	-9.8 (3)	Sn1—C27—C28—C29	86.8 (2)
C13—C8—C9—C10	0.1 (4)	C33—C28—C29—C30	0.5 (4)
N2-C8-C9-C10	178.9 (2)	C27—C28—C29—C30	179.6 (2)
C8—C9—C10—C11	0.1 (4)	C28—C29—C30—C31	-0.5 (4)
C9—C10—C11—C12	-0.5 (4)	C29—C30—C31—C32	0.5 (4)
C9-C10-C11-Br1	-179.97 (19)	C30—C31—C32—C33	-0.4 (5)
C10-C11-C12-C13	0.7 (4)	C29—C28—C33—C32	-0.5 (4)
Br1-C11-C12-C13	-179.82 (17)	C27—C28—C33—C32	-179.6 (2)
C11—C12—C13—C8	-0.5 (3)	C31—C32—C33—C28	0.4 (4)
C9—C8—C13—C12	0.1 (3)	Sn1—C34—C35—C36	99.9 (2)
N2-C8-C13-C12	-178.5 (2)	Sn1—C34—C35—C40	-78.5 (2)
Sn1—O5—C14—O4	1.63 (19)	C40—C35—C36—C37	0.7 (3)
Sn1—O5—C14—C15	-177.6 (2)	C34—C35—C36—C37	-177.8 (2)
Sn1—O4—C14—O5	-2.0 (2)	C35—C36—C37—C38	-0.9 (4)
Sn1—O4—C14—C15	177.22 (16)	C36—C37—C38—C39	0.5 (4)
O5—C14—C15—C20	-180.0 (2)	C37—C38—C39—C40	0.1 (4)
O4—C14—C15—C20	0.8 (3)	C38—C39—C40—C35	-0.4 (3)
O5-C14-C15-C16	0.3 (3)	C36—C35—C40—C39	0.0 (3)
O4—C14—C15—C16	-178.9 (2)	C34—C35—C40—C39	178.4 (2)

Symmetry codes: (i) -x+5/2, y+1/2, -z+1/2; (ii) -x+5/2, y-1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H…A
O3—H3…O2	0.77 (3)	1.89 (3)	2.586 (2)	152 (3)
O3—H3···O5 ⁱⁱ	0.77 (3)	2.42 (3)	2.818 (2)	114 (3)
O6—H6…O5	0.76 (3)	1.89 (3)	2.596 (2)	153 (3)

Symmetry code: (ii) -x+5/2, y-1/2, -z+1/2.

Aquadibenzylbis(4-{(E)-[(Z)-4-hydroxypent-3-en-2-ylidene]amino}benzoato)tin(IV) benzene disolvate (III)

F(000) = 1888

 $\theta = 2.0 - 30.0^{\circ}$

 $\mu = 0.63 \text{ mm}^{-1}$

Tablet, colorless

 $0.25 \times 0.22 \times 0.10 \text{ mm}$

T = 160 K

 $D_{\rm x} = 1.358 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 125492 reflections

Crystal data

 $[Sn(C_7H_7)_2(C_{12}H_{12}NO_3)_2(H_2O)] \cdot 2C_6H_6$ $M_r = 911.62$ Monoclinic, C2/c a = 23.6530 (5) Å b = 10.1034 (2) Å c = 20.5952 (4) Å $\beta = 115.0715$ (12)° V = 4458.02 (16) Å³ Z = 4

Data collection

Nonius KappaCCD area detector	$T_{\min} = 0.753, T_{\max} = 0.943$
diffractometer	58583 measured reflections
Radiation source: Nonius FR590 sealed tube	6506 independent reflections
generator	5193 reflections with $I > 2\sigma(I)$
Horizontally mounted graphite crystal	$R_{\rm int} = 0.101$
monochromator	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Detector resolution: 9 pixels mm ⁻¹	$h = -32 \rightarrow 32$
ω scans with κ offsets	$k = -14 \rightarrow 14$
Absorption correction: multi-scan	$l = -28 \rightarrow 29$
(SORTAV; Blessing, 1995)	
/	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: mixed
$wR(F^2) = 0.148$	H atoms treated by a mixture of independent
S = 1.05	and constrained refinement
6506 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0943P)^2 + 4.7027P]$
228 parameters	where $P = (F_o^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: heavy-atom method	$\Delta \rho_{\rm max} = 1.06 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -2.17 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: benzene Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: on a glass fibre Mosaicity (deg.): 1.053 (1) Frames collected: 0 Seconds exposure per frame: 33 Degrees rotation per frame: 0.0 Crystal-detector distance (mm): 0.0 Client: Tushar Basu Sample code: TSBB-192 (L0711)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The asymmetric unit contains one half of a molecule of the Sn-complex, which sits across a two-fold axis, plus a highly disordered benzene molecule. The disordered solvent molecule could not be modelled adequately, so its contribution to the diffraction data was removed using the SQUEEZE routine of the program PLATON. When the solvent molecule is excluded from the model, there are four cavities of 324 Å³ per unit cell. The total number of electrons contributing to each void was calculated by the SQUEEZE routine to be approximately 85 e. A benzene molecule has 42 e, which suggests that the cavities have two molecules of benzene (one per asymmetric unit) and this approximation was used in the subsequent calculation of the empirical formula, formula weight, density, linear absorption coefficient and F(000). Based on the assumption, the overall ratio of Sn-complex molecules to benzene is 1:2.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.000000	0.20944 (3)	0.250000	0.01902 (10)	
01	-0.06248 (9)	0.0370(2)	0.19456 (11)	0.0248 (4)	
O2	-0.10242 (10)	0.2366 (2)	0.16188 (12)	0.0247 (4)	
03	0.000000	0.4408 (3)	0.250000	0.0353 (8)	
H3	0.0301 (14)	0.476 (4)	0.2841 (16)	0.051 (13)*	
O10	-0.43538 (10)	-0.1170 (2)	-0.14546 (12)	0.0303 (5)	
N1	-0.34338 (12)	-0.1205 (3)	-0.01611 (14)	0.0255 (5)	
H1	-0.3581 (18)	-0.084 (4)	-0.055 (2)	0.033 (10)*	
C1	-0.10849 (13)	0.1113 (3)	0.15772 (15)	0.0213 (6)	
C2	-0.16937 (13)	0.0487 (3)	0.11166 (15)	0.0222 (6)	
C3	-0.17658 (13)	-0.0879 (3)	0.11204 (16)	0.0239 (6)	
H3A	-0.142047	-0.141854	0.140536	0.029*	
C4	-0.23372 (14)	-0.1456 (3)	0.07121 (17)	0.0261 (6)	
H4	-0.238480	-0.238854	0.071822	0.031*	
C5	-0.28419 (13)	-0.0668 (3)	0.02923 (15)	0.0236 (6)	
C6	-0.27703 (14)	0.0703 (3)	0.02811 (17)	0.0268 (6)	
H6	-0.311396	0.124213	-0.000880	0.032*	
C7	-0.21968 (14)	0.1274 (3)	0.06939 (17)	0.0277 (6)	
H7	-0.214750	0.220631	0.068782	0.033*	
C8	-0.37763 (15)	-0.2072 (3)	-0.00003 (18)	0.0291 (7)	
C9	-0.43476 (15)	-0.2480 (3)	-0.05114 (18)	0.0263 (6)	
H9	-0.457607	-0.310895	-0.037549	0.032*	
C10	-0.46156 (15)	-0.2012 (3)	-0.12320 (18)	0.0258 (6)	
C11	-0.52313 (16)	-0.2589 (4)	-0.17386 (18)	0.0322 (7)	
H11A	-0.547018	-0.285054	-0.146995	0.048*	
H11B	-0.515815	-0.336583	-0.197729	0.048*	
H11C	-0.546698	-0.192478	-0.209889	0.048*	
C12	-0.3541 (2)	-0.2594 (6)	0.0753 (2)	0.0541 (12)	
H12A	-0.323563	-0.329840	0.082306	0.081*	
H12B	-0.389126	-0.294807	0.083429	0.081*	
H12C	-0.334203	-0.187465	0.109331	0.081*	
C13	0.04032 (16)	0.2193 (4)	0.17412 (18)	0.0316 (7)	
H13A	0.069539	0.295146	0.187002	0.038*	
H13B	0.065092	0.137904	0.178904	0.038*	
C14	-0.00517 (15)	0.2337 (3)	0.09721 (17)	0.0253 (6)	
C15	-0.03435 (18)	0.1238 (4)	0.0575 (2)	0.0372 (8)	
H15	-0.024141	0.038632	0.078874	0.045*	
C16	-0.0783 (2)	0.1349 (5)	-0.0130 (2)	0.0474 (10)	
H16	-0.097970	0.058061	-0.039592	0.057*	
C17	-0.0931 (2)	0.2581 (6)	-0.0441 (2)	0.0494 (11)	
H17	-0.124052	0.267139	-0.091927	0.059*	
C18	-0.06295 (19)	0.3685 (4)	-0.0056 (2)	0.0436 (10)	
H18	-0.071962	0.453215	-0.027685	0.052*	
C19	-0.01989 (18)	0.3569 (4)	0.06461 (19)	0.0346 (8)	
H19	-0.000091	0.433880	0.090941	0.042*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01201 (14)	0.02281 (16)	0.01816 (14)	0.000	0.00244 (10)	0.000
01	0.0133 (10)	0.0248 (11)	0.0282 (10)	-0.0007 (8)	0.0008 (8)	-0.0012 (9)
O2	0.0183 (10)	0.0220 (11)	0.0292 (11)	-0.0009 (8)	0.0057 (9)	-0.0012 (9)
03	0.039 (2)	0.0160 (15)	0.0325 (18)	0.000	-0.0025 (16)	0.000
O10	0.0229 (11)	0.0344 (13)	0.0259 (11)	-0.0022 (10)	0.0030 (9)	0.0022 (10)
N1	0.0153 (12)	0.0317 (14)	0.0215 (12)	-0.0003 (10)	0.0002 (10)	0.0034 (11)
C1	0.0156 (13)	0.0229 (14)	0.0236 (13)	-0.0010 (11)	0.0067 (11)	-0.0015 (11)
C2	0.0161 (13)	0.0283 (15)	0.0198 (12)	-0.0009 (11)	0.0052 (11)	-0.0017 (11)
C3	0.0141 (13)	0.0286 (15)	0.0240 (13)	0.0037 (11)	0.0033 (11)	-0.0021 (12)
C4	0.0204 (14)	0.0228 (15)	0.0304 (15)	-0.0019 (12)	0.0061 (12)	-0.0057 (13)
C5	0.0158 (13)	0.0309 (16)	0.0211 (13)	-0.0027 (11)	0.0050 (11)	-0.0020 (12)
C6	0.0139 (13)	0.0311 (16)	0.0294 (15)	0.0016 (12)	0.0034 (12)	0.0091 (13)
C7	0.0212 (15)	0.0269 (15)	0.0294 (15)	-0.0012 (12)	0.0055 (12)	0.0051 (13)
C8	0.0205 (15)	0.0376 (18)	0.0271 (15)	-0.0012 (13)	0.0079 (12)	0.0009 (13)
C9	0.0209 (15)	0.0276 (14)	0.0288 (15)	-0.0022 (12)	0.0089 (12)	0.0002 (13)
C10	0.0190 (14)	0.0257 (15)	0.0282 (15)	0.0012 (12)	0.0057 (12)	-0.0040 (12)
C11	0.0206 (16)	0.0419 (19)	0.0277 (16)	-0.0037 (14)	0.0039 (13)	-0.0031 (14)
C12	0.032 (2)	0.091 (3)	0.0306 (19)	-0.021 (2)	0.0044 (16)	0.017 (2)
C13	0.0213 (15)	0.046 (2)	0.0287 (16)	-0.0012 (14)	0.0116 (13)	-0.0015 (14)
C14	0.0218 (15)	0.0290 (17)	0.0265 (15)	0.0010 (12)	0.0118 (12)	-0.0011 (12)
C15	0.045 (2)	0.0318 (18)	0.0383 (18)	-0.0037 (16)	0.0206 (17)	-0.0007 (16)
C16	0.046 (2)	0.062 (3)	0.0314 (18)	-0.016 (2)	0.0139 (17)	-0.0117 (19)
C17	0.034 (2)	0.086 (3)	0.0244 (17)	0.008 (2)	0.0086 (15)	0.003 (2)
C18	0.047 (2)	0.050 (2)	0.042 (2)	0.0243 (19)	0.0264 (18)	0.0200 (19)
C19	0.043 (2)	0.0318 (19)	0.0389 (18)	0.0051 (15)	0.0266 (17)	0.0031 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Sn1—O1	2.257 (2)	C9—C10	1.425 (5)	
Sn1—O2	2.348 (2)	С9—Н9	0.9500	
Sn1—O3	2.337 (3)	C10—C11	1.504 (4)	
Sn1—C13	2.150 (3)	C11—H11A	0.9800	
01—C1	1.274 (4)	C11—H11B	0.9800	
O2—C1	1.273 (4)	C11—H11C	0.9800	
O3—H3	0.838 (7)	C12—H12A	0.9800	
O10-C10	1.248 (4)	C12—H12B	0.9800	
N1C5	1.421 (4)	C12—H12C	0.9800	
N1—C8	1.327 (4)	C13—C14	1.498 (5)	
N1—H1	0.82 (4)	C13—H13A	0.9900	
C1—C2	1.489 (4)	C13—H13B	0.9900	
С2—С7	1.389 (4)	C14—C15	1.378 (5)	
C2—C3	1.391 (4)	C14—C19	1.388 (5)	
C3—C4	1.382 (4)	C15—C16	1.386 (5)	
С3—НЗА	0.9500	C15—H15	0.9500	
C4—C5	1.390 (4)	C16—C17	1.376 (7)	

C4—H4	0.9500	C16—H16	0.9500
C5—C6	1.397 (5)	C17—C18	1.380 (7)
C6—C7	1.385 (4)	С17—Н17	0.9500
С6—Н6	0.9500	C18—C19	1.376 (5)
С7—Н7	0.9500	C18—H18	0.9500
C8—C9	1.378 (5)	С19—Н19	0.9500
C8—C12	1.505 (5)		
O1—Sn1—O1 ⁱ	78.94 (11)	C9—C8—C12	119.9 (3)
O1—Sn1—O2	57.26 (8)	C8—C9—C10	123.8 (3)
$O1$ — $Sn1$ — $O2^{i}$	136.18 (8)	С8—С9—Н9	118.1
O1—Sn1—O3	140.53 (5)	С10—С9—Н9	118.1
O1—Sn1—C13	93.73 (11)	O10—C10—C9	122.5 (3)
$O1$ — $Sn1$ — $C13^{i}$	90.36 (11)	O10-C10-C11	119.6 (3)
$O2$ — $Sn1$ — $O2^i$	166.56 (11)	C9—C10—C11	117.8 (3)
O2—Sn1—O3	83.28 (6)	C10-C11-H11A	109.5
O2—Sn1—C13	93.61 (11)	C10-C11-H11B	109.5
$O2$ — $Sn1$ — $C13^{i}$	85.77 (11)	H11A—C11—H11B	109.5
O3—Sn1—C13	87.35 (10)	C10—C11—H11C	109.5
C13—Sn1—C13 ⁱ	174.7 (2)	H11A—C11—H11C	109.5
C1-O1-Sn1	93.31 (18)	H11B—C11—H11C	109.5
C1—O2—Sn1	89.18 (17)	C8—C12—H12A	109.5
Sn1—O3—H3	115 (3)	C8—C12—H12B	109.5
Sn1—O3—H3 ⁱ	115 (3)	H12A—C12—H12B	109.5
H3—O3—H3 ⁱ	130 (7)	C8—C12—H12C	109.5
C8—N1—C5	128.6 (3)	H12A—C12—H12C	109.5
C8—N1—H1	120 (3)	H12B—C12—H12C	109.5
C5—N1—H1	111 (3)	C14—C13—Sn1	115.6 (2)
O2—C1—O1	120.1 (3)	C14—C13—H13A	108.4
O2—C1—C2	121.1 (3)	Sn1—C13—H13A	108.4
O1—C1—C2	118.7 (3)	C14—C13—H13B	108.4
C7—C2—C3	119.8 (3)	Sn1—C13—H13B	108.4
C7—C2—C1	119.8 (3)	H13A—C13—H13B	107.4
C3—C2—C1	120.4 (3)	C15—C14—C19	118.4 (3)
C4—C3—C2	120.4 (3)	C15—C14—C13	120.3 (3)
С4—С3—Н3А	119.8	C19—C14—C13	121.3 (3)
С2—С3—Н3А	119.8	C14—C15—C16	121.4 (4)
C3—C4—C5	119.9 (3)	C14—C15—H15	119.3
C3—C4—H4	120.1	C16—C15—H15	119.3
C5—C4—H4	120.1	C17—C16—C15	119.4 (4)
C4—C5—C6	120.0 (3)	C17—C16—H16	120.3
C4—C5—N1	122.5 (3)	C15—C16—H16	120.3
C6—C5—N1	117.4 (3)	C16—C17—C18	119.7 (4)
C7—C6—C5	119.8 (3)	С16—С17—Н17	120.1
С7—С6—Н6	120.1	C18—C17—H17	120.1
С5—С6—Н6	120.1	C19—C18—C17	120.5 (4)
C6—C7—C2	120.2 (3)	C19—C18—H18	119.7
С6—С7—Н7	119.9	C17—C18—H18	119.7

C2—C7—H7	119.9	C18—C19—C14	120.5 (4)
N1—C8—C9	120.8 (3)	C18—C19—H19	119.8
N1—C8—C12	119.4 (3)	C14—C19—H19	119.8
$\begin{array}{c} Sn1-02-C1-01\\ Sn1-02-C1-C2\\ Sn1-01-C1-02\\ Sn1-01-C1-C2\\ 02-C1-C2-C7\\ 01-C1-C2-C7\\ 02-C1-C2-C3\\ 01-C1-C2-C3\\ 01-C1-C2-C3\\ C7-C2-C3-C4\\ C1-C2-C3-C4\\ C2-C3-C4-C5\\ C3-C4-C5-C6\\ C3-C4-C5-N1\\ C8-N1-C5-C4\\ C8-N1-C5-C6\\ C4-C5-C6\\ C4-C5-C6\\ C4-C5-C6\\ C4-C5-C6\\ C4-C5-C6\\ C4-C5-C6\\ C5-C6\\ C4-C5-C6\\ C5-C6\\ C4-C5-C6\\ C4-$	$\begin{array}{c} -3.3 (3) \\ 175.1 (2) \\ 3.4 (3) \\ -175.0 (2) \\ 3.5 (4) \\ -178.1 (3) \\ -174.9 (3) \\ 3.5 (4) \\ -0.7 (5) \\ 177.7 (3) \\ 0.3 (5) \\ 177.4 (3) \\ 51.0 (5) \\ -131.8 (4) \\ -0.6 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.5 (5) \\ -177.9 (3) \\ 179.5 (3) \\ 0.6 (6) \\ -0.6 (5) \\ 178.2 (4) \\ -1.2 (5) \\ 177.5 (3) \\ -83.5 (4) \\ 95.3 (3) \\ -1.2 (5) \\ 177.7 (3) \\ 0.0 (6) \\ 1.8 (6) \\ -2.6 (6) \\ 1.4 (5) \end{array}$
N1—C5—C6—C7	-177.8 (3)	C15—C14—C19—C18	0.4 (5)
C5—C6—C7—C2	0.2 (5)	C13—C14—C19—C18	-178.4 (3)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	<i>D</i> —H… <i>A</i>
N1—H1…O10	0.82 (4)	2.01 (4)	2.631 (3)	132 (4)
O3—H3…O10 ⁱⁱ	0.84 (1)	1.95 (2)	2.712 (3)	151 (4)

Symmetry code: (ii) x+1/2, -y+1/2, z+1/2.

 $Octabutyltetrakis \{\mu - (E) - 4 - [(4 - hydroxy - 3, 5 - dimethylphenyl) diazenyl] benzoato \} di - \mu_3 - oxido - tetratin(IV) ethanol disolvate (IV)$

Crystal data

$[Sn_4(C_4H_9)_8(C_{15}H_{13}N_2O_3)_4O_2] \cdot 2C_2H_6O$	F(000) = 2192
$M_r = 2132.88$	$D_{\rm x} = 1.422 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 11.8395(1) Å	Cell parameters from 171311 reflections
b = 24.2855 (3) Å	$\theta = 2.0 - 27.5^{\circ}$
c = 17.3557 (2) Å	$\mu = 1.06 \text{ mm}^{-1}$
$\beta = 93.2962 \ (7)^{\circ}$	T = 160 K
$V = 4982.00 (9) Å^3$	Tablet, orange
Z = 2	$0.35 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Nonius KappaCCD area detector diffractometer	$T_{\min} = 0.829, T_{\max} = 0.922$ 94026 measured reflections
Radiation source: Nonius FR590 sealed tube generator	11376 independent reflections 9553 reflections with $I > 2\sigma(I)$
Horizontally mounted graphite crystal monochromator	$R_{\rm int} = 0.049$ $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Detector resolution: 9 pixels mm ⁻¹	$h = -15 \rightarrow 15$
φ and ω scans with κ offsets	$k = -31 \rightarrow 31$
Absorption correction: multi-scan (SORTAV; Blessing, 1995)	$l = -22 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: mixed
$wR(F^2) = 0.077$	H atoms treated by a mixture of independent
S = 1.04	and constrained refinement
11371 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 6.8029P]$
628 parameters	where $P = (F_o^2 + 2F_c^2)/3$
144 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$

Special details

direct methods

Primary atom site location: structure-invariant

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: toluene Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: on a glass fibre Mosaicity (deg.): 0.746 (1) Frames collected: 718 Seconds exposure per frame: 60 Degrees rotation per frame: 1.0 Crystal-detector distance (mm): 38.0 Client: Tushar Basu-Baul Sample code: TSBB-304 (L1014)

 $\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.93 \ {\rm e} \ {\rm \AA}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The Sn-complex molecule sits across a crystallographic centre of inversion and the asymmetric includes a molecule of EtOH. Two butyl groups at the same Sn atom are disordered over two conformations. Two sets of overlapping positions were defined for the atoms of one methylene group in one ligand and for all atoms of the other disordered butyl group and the site occupation factors of the major conformations of these groups refined to 0.846 (6) and 0.683 (5), respectively. Similarity restraints were applied to the chemically equivalent bond lengths and angles involving all disordered C-atoms, while neighbouring atoms within and between each conformation of the disordered butyl groups were restrained to have similar atomic displacement parameters.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Sn1	0.05001 (2)	0.37049 (2)	0.45148 (2)	0.03285 (6)	
Sn2	0.08779 (2)	0.52372 (2)	0.43610 (2)	0.02578 (5)	
01	0.19192 (17)	0.47981 (8)	0.34877 (12)	0.0416 (5)	
O2	0.1733 (3)	0.39106 (10)	0.36369 (17)	0.0832 (10)	
O3	0.86222 (19)	0.39724 (10)	-0.16369 (12)	0.0469 (5)	
Н3	0.893 (3)	0.3655 (15)	-0.159 (2)	0.055 (11)*	
O4	-0.07448 (14)	0.36432 (7)	0.53976 (10)	0.0289 (4)	
05	-0.06043 (16)	0.27469 (8)	0.51891 (12)	0.0375 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

06	-0.96252(16)	0.32178(10)	0.86854 (13)	0.0446(5)
U0 U6	-0.962.52(10)	0.32178(10) 0.3262(17)	0.00034(13)	0.076(13)
07	0.900(3)	0.3202(17) 0.45122(7)	0.921(2) 0.47302(10)	0.070(13)
07	0.02343(14)	0.43122(7)	0.47392(10)	0.0205(4)
IN I	0.49994 (19)	0.38801(10)	0.08500(13)	0.0346(5)
N2	0.5496 (2)	0.42950 (10)	0.05843 (13)	0.0366 (5)
N3	-0.52091 (18)	0.28868 (10)	0.69716 (13)	0.0356 (5)
N4	-0.53547 (19)	0.31997 (11)	0.75336 (13)	0.0377 (5)
C1	0.2124 (2)	0.43154 (13)	0.33106 (16)	0.0367 (6)
C2	0.2894 (2)	0.42124 (12)	0.26719 (15)	0.0342 (6)
C3	0.3003 (3)	0.36865 (13)	0.23750 (18)	0.0438 (7)
H31	0.260555	0.338821	0.258794	0.053*
C4	0.3693 (3)	0.35950 (13)	0.17654 (17)	0.0413 (7)
H4	0.375730	0.323563	0.155619	0.050*
C5	0.4283 (2)	0.40272 (12)	0.14652 (15)	0.0330 (6)
C6	0.4202 (2)	0.45534 (13)	0.17723 (16)	0.0384 (6)
H61	0.462926	0.484808	0.157705	0.046*
C7	0.3490 (2)	0.46434 (12)	0.23667 (16)	0.0375 (6)
H7	0.341064	0.500458	0.256670	0.045*
C8	0.6245(2)	0.41710 (12)	-0.00080(15)	0.0335 (6)
C9	0.6373 (2)	0.36544 (12)	-0.03379(14)	0.0323 (6)
H9	0.591369	0.335693	-0.018730	0.039*
C10	0.7166(2)	0.35691(12)	-0.08854(15)	0.0338 (6)
C11	0.7829(2)	0.55091(12) 0.40186(12)	-0.10944(15)	0.0347(6)
C12	0.7625(2) 0.7715(2)	0.45410(12)	-0.07742(16)	0.0377(6)
C12	0.7713(2) 0.6898(2)	0.46103(12)	-0.02381(16)	0.0372(0)
U12	0.678300	0.40103 (12)	-0.002518	0.0370(0)
C14	-0.1081(2)	0.490499 0.31416 (11)	0.002518 0.54806 (14)	0.045
C14	0.1001(2) 0.2107(2)	0.31410(11) 0.20627(11)	0.54890(14)	0.0290(3)
	-0.2107(2)	0.30027(11)	0.39309(14)	0.0282(3)
	-0.2/56(2)	0.25915 (11)	0.58262 (15)	0.0331 (6)
H16	-0.250333	0.230332	0.550798	0.040*
C17	-0.3774 (2)	0.25384 (12)	0.61792 (16)	0.0353 (6)
HI7	-0.423231	0.222120	0.608842	0.042*
C18	-0.4119 (2)	0.29533 (11)	0.66666 (15)	0.0317 (6)
C19	-0.3446 (2)	0.34171 (11)	0.68061 (16)	0.0339 (6)
H19	-0.366960	0.369375	0.715311	0.041*
C20	-0.2452 (2)	0.34710 (12)	0.64359 (16)	0.0335 (6)
H20	-0.199796	0.378994	0.652214	0.040*
C21	-0.6464 (2)	0.31876 (12)	0.78052 (16)	0.0353 (6)
C22	-0.7403 (2)	0.29662 (12)	0.73911 (15)	0.0342 (6)
H22	-0.731344	0.279902	0.690359	0.041*
C23	-0.8464 (2)	0.29884 (12)	0.76852 (15)	0.0341 (6)
C24	-0.8561 (2)	0.32229 (12)	0.84176 (16)	0.0340 (6)
C25	-0.7646 (2)	0.34633 (12)	0.88293 (16)	0.0367 (6)
C26	-0.6596 (2)	0.34449 (13)	0.85090 (16)	0.0384 (6)
H26	-0.595981	0.361054	0.877554	0.046*
C27	0.7332 (3)	0.30115 (12)	-0.12382 (17)	0.0417 (7)
H271	0.805858	0.285805	-0.104178	0.063*
H272	0.732898	0.304692	-0.180080	0.063*
. —				

electronic reprint

H273	0.671797	0.276597	-0.110190	0.063*	
C28	0.8491 (3)	0.50027 (14)	-0.0985(2)	0.0493 (8)	
H281	0.925568	0.493058	-0.076133	0.074*	
H282	0.821345	0.535095	-0.078167	0.074*	
H283	0.850778	0.502670	-0.154743	0.074*	
C29	-0.9499(2)	0.27881 (15)	0.72325 (18)	0.0467 (8)	
H291	-1.002889	0.309436	0.714349	0.070*	
H292	-0.986017	0.249706	0.752224	0.070*	
H293	-0.928331	0.264165	0.673558	0.070*	
C30	-0.7776(3)	0.37509 (15)	0.95911 (19)	0.0510 (8)	
H301	-0.837317	0.402949	0.952971	0.076*	
H302	-0.706064	0.392894	0.975839	0.076*	
H303	-0 797867	0 348070	0 997917	0.076*	
C31	-0.0504(3)	0.33948(15)	0.35816(19)	0.0621(10)	
H311	-0.019966	0.354021	0.310265	0.074*	0 846 (6)
H312	-0.040346	0 299023	0.357445	0.074*	0.846 (6)
H313	0.003673	0.319310	0.327125	0.074*	0.154 (6)
H314	-0.097015	0.310760	0.381464	0.074*	0.154 (6)
C32A	-0.1746(3)	0.35092 (16)	0.35450 (19)	0.074 0.0482 (10)	0.134 (0)
H321	-0.186547	0.300064	0.360017	0.058*	0.846 (6)
H321 H322	-0.208716	0.331909	0.307941	0.058*	0.040(0) 0.846(6)
C32B	-0.1307(9)	0.351707	0.2085 (0)	0.038	0.040(0) 0.154(6)
U32D	-0.154143	0.3003 (3)	0.2985 (9)	0.057*	0.154(0) 0.154(6)
П323 Ц324	-0.000353	0.402/44	0.318202	0.057*	0.154(0)
C22	-0.2352(3)	0.372993	0.230881 0.2787(2)	0.057°	0.134 (0)
H331	-0.207086	0.353506	0.2787 (2)	0.0030 (10)	0.846 (6)
H337	-0.207080	0.333300	0.253028	0.078*	0.846(0)
П332	-0.227730	0.292717	0.209771	0.078*	0.040(0)
П333 Ц224	-0.227730	0.322244	0.223890	0.078*	0.154(0)
П334	-0.220917 -0.2584(4)	0.297720 0.24142 (18)	0.308001 0.2827(2)	0.0750(12)	0.134 (0)
C34	-0.3364(4)	0.34142(10)	0.2037 (3)	0.0730 (12)	
П341 11242	-0.384999	0.321324	0.326193	0.112*	
П 342	-0.398038	0.328149	0.230420	0.112*	
H343	-0.3/298/	0.380847	0.289950	0.112^{+}	0 (92 (5)
C35A	0.1923 (5)	0.3303 (3)	0.5137 (3)	0.0520 (11)	0.083(5)
H351	0.256182	0.362/39	0.512478	0.062*	0.683(5)
H352	0.1/4183	0.331603	0.568242	0.062*	0.683(5)
C36A	0.2283 (3)	0.281/5 (18)	0.4817 (3)	0.0561 (11)	0.683 (5)
H361	0.215317	0.282017	0.424886	0.067*	0.683 (5)
H362	0.1811//	0.252161	0.502419	0.06/*	0.683 (5)
C37A	0.3522 (3)	0.2694 (2)	0.5023 (3)	0.0584 (11)	0.683 (5)
H371	0.368956	0.277667	0.557674	0.0/0*	0.683 (5)
H372	0.366059	0.229671	0.494476	0.070*	0.683 (5)
C38A	0.4320 (5)	0.3023 (3)	0.4547 (4)	0.0740 (14)	0.683 (5)
H381	0.414469	0.295236	0.399770	0.111*	0.683 (5)
H382	0.510245	0.291322	0.468471	0.111*	0.683 (5)
H383	0.422915	0.341678	0.465264	0.111*	0.683 (5)
C35B	0.1813 (8)	0.3411 (7)	0.5291 (5)	0.0499 (18)	0.317 (5)
H353	0.180419	0.365466	0.574715	0.060*	0.317 (5)

H354	0.155412	0.304566	0.546319	0.060*	0.317 (5)
C36B	0.3053 (7)	0.3336 (4)	0.5138 (6)	0.0556 (13)	0.317 (5)
H363	0.335371	0.368597	0.493995	0.067*	0.317 (5)
H364	0.348202	0.324812	0.562901	0.067*	0.317 (5)
C37B	0.3229 (7)	0.2882 (5)	0.4560 (7)	0.0624 (14)	0.317 (5)
H373	0.268332	0.293180	0.411172	0.075*	0.317 (5)
H374	0.306460	0.252346	0.480111	0.075*	0.317 (5)
C38B	0.4416 (9)	0.2867 (6)	0.4277 (9)	0.069 (2)	0.317 (5)
H384	0.455717	0.320455	0.398989	0.104*	0.317 (5)
H385	0.449236	0.254724	0.393922	0.104*	0.317 (5)
H386	0.496459	0.283802	0.472014	0.104*	0.317 (5)
C39	-0.0139 (2)	0.55226 (11)	0.33912 (15)	0.0341 (6)	
H391	-0.063498	0.582067	0.356541	0.041*	
H392	0.036437	0.568497	0.301596	0.041*	
C40	-0.0874 (3)	0.50922 (12)	0.29784 (17)	0.0408 (7)	
H401	-0.136548	0.491785	0.335113	0.049*	
H402	-0.038530	0.480228	0.277378	0.049*	
C41	-0.1604 (3)	0.53376 (16)	0.2320 (2)	0.0556 (9)	
H411	-0.204804	0.564561	0.252264	0.067*	
H412	-0.110612	0.549153	0.193499	0.067*	
C42	-0.2410 (4)	0.4931 (2)	0.1921 (3)	0.0872 (15)	
H421	-0.197718	0.464150	0.167801	0.131*	
H422	-0.288684	0.512244	0.152600	0.131*	
H423	-0.288924	0.476569	0.230118	0.131*	
C43	0.2440 (2)	0.53863 (12)	0.49912 (17)	0.0366 (6)	
H431	0.296430	0.556690	0.464588	0.044*	
H432	0.230664	0.564508	0.541729	0.044*	
C44	0.3002 (2)	0.48697 (13)	0.53277 (18)	0.0417 (7)	
H441	0.244056	0.465861	0.560869	0.050*	
H442	0.324509	0.463603	0.490002	0.050*	
C45	0.4017 (3)	0.49905 (16)	0.5872 (2)	0.0636 (10)	
H451	0.377820	0.522706	0.629762	0.076*	
H452	0.458541	0.519662	0.559023	0.076*	
C46	0.4560 (4)	0.44683 (19)	0.6211 (3)	0.0981 (18)	
H461	0.400622	0.426645	0.649966	0.147*	
H462	0.521129	0.456675	0.655762	0.147*	
H463	0.481311	0.423588	0.579210	0.147*	
08	-0.0246 (2)	0.16675 (10)	0.50888 (14)	0.0595 (7)	
H8	-0.032 (4)	0.2013 (19)	0.528 (3)	0.084 (14)*	
C47	-0.0545 (3)	0.12520 (15)	0.5618 (2)	0.0549 (9)	
H471	-0.040073	0.088507	0.539589	0.066*	
H472	-0.136335	0.127863	0.570249	0.066*	
C48	0.0098 (4)	0.13068 (18)	0.6355 (2)	0.0752 (12)	
H481	-0.010756	0.165217	0.660340	0.113*	
H482	0.090894	0.130889	0.626875	0.113*	
H483	-0.007377	0.099619	0.668940	0.113*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03794 (11)	0.02823 (10)	0.03422 (10)	0.00428 (8)	0.01800 (8)	0.00162 (7)
Sn2	0.02240 (9)	0.02967 (10)	0.02597 (9)	0.00093 (7)	0.00740 (6)	0.00225 (7)
01	0.0458 (12)	0.0420 (12)	0.0398 (11)	0.0046 (9)	0.0260 (9)	-0.0031 (9)
O2	0.117 (2)	0.0470 (13)	0.0948 (19)	0.0125 (14)	0.0868 (18)	0.0092 (13)
O3	0.0464 (13)	0.0545 (14)	0.0422 (12)	0.0101 (11)	0.0240 (10)	0.0074 (10)
04	0.0293 (9)	0.0298 (9)	0.0285 (9)	-0.0024 (7)	0.0102 (7)	-0.0004 (7)
05	0.0395 (11)	0.0287 (10)	0.0460 (11)	-0.0028 (8)	0.0171 (9)	-0.0038 (8)
06	0.0283 (10)	0.0646 (14)	0.0419 (12)	0.0000 (9)	0.0122 (9)	-0.0002 (11)
O7	0.0267 (9)	0.0238 (8)	0.0297 (9)	0.0022 (7)	0.0121 (7)	0.0017 (7)
N1	0.0319 (12)	0.0415 (13)	0.0315 (12)	0.0047 (10)	0.0104 (9)	0.0013 (10)
N2	0.0360 (12)	0.0425 (13)	0.0322 (12)	0.0065 (10)	0.0110 (10)	0.0002 (10)
N3	0.0277 (11)	0.0430 (13)	0.0371 (12)	-0.0018 (10)	0.0099 (9)	0.0032 (10)
N4	0.0294 (12)	0.0519 (15)	0.0326 (12)	-0.0011 (10)	0.0089 (9)	0.0018 (11)
C1	0.0348 (14)	0.0470 (17)	0.0294 (14)	0.0086 (13)	0.0121 (11)	0.0071 (12)
C2	0.0327 (14)	0.0431 (16)	0.0277 (13)	0.0094 (12)	0.0105 (11)	0.0047 (11)
C3	0.0462 (17)	0.0426 (17)	0.0451 (17)	0.0056 (14)	0.0238 (14)	0.0059 (13)
C4	0.0438 (16)	0.0405 (16)	0.0413 (16)	0.0053 (13)	0.0180 (13)	-0.0039 (13)
C5	0.0302 (13)	0.0425 (16)	0.0270 (13)	0.0063 (11)	0.0079 (10)	0.0000 (11)
C6	0.0364 (15)	0.0445 (16)	0.0355 (15)	-0.0003 (12)	0.0134 (12)	0.0005 (12)
C7	0.0372 (15)	0.0418 (16)	0.0348 (15)	0.0017 (12)	0.0130 (12)	-0.0048 (12)
C8	0.0327 (14)	0.0411 (15)	0.0276 (13)	0.0075 (12)	0.0092 (10)	0.0024 (11)
C9	0.0327 (14)	0.0401 (15)	0.0245 (12)	0.0025 (11)	0.0046 (10)	0.0043 (11)
C10	0.0334 (14)	0.0407 (15)	0.0275 (13)	0.0070 (12)	0.0045 (11)	0.0003 (11)
C11	0.0314 (13)	0.0490 (17)	0.0246 (13)	0.0082 (12)	0.0089 (10)	0.0057 (11)
C12	0.0353 (15)	0.0427 (16)	0.0344 (15)	0.0014 (12)	0.0088 (12)	0.0054 (12)
C13	0.0429 (16)	0.0367 (15)	0.0340 (15)	0.0050 (12)	0.0100 (12)	0.0006 (12)
C14	0.0286 (13)	0.0303 (14)	0.0281 (13)	0.0011 (10)	0.0027 (10)	0.0004 (10)
C15	0.0235 (12)	0.0332 (13)	0.0282 (12)	-0.0014 (10)	0.0049 (10)	0.0046 (10)
C16	0.0314 (13)	0.0361 (14)	0.0326 (14)	-0.0020 (11)	0.0079 (11)	-0.0030 (11)
C17	0.0290 (13)	0.0386 (15)	0.0391 (15)	-0.0074 (11)	0.0077 (11)	0.0001 (12)
C18	0.0252 (12)	0.0385 (15)	0.0319 (13)	-0.0009 (11)	0.0065 (10)	0.0052 (11)
C19	0.0329 (14)	0.0369 (15)	0.0328 (14)	0.0008 (11)	0.0101 (11)	-0.0012 (11)
C20	0.0295 (13)	0.0356 (14)	0.0361 (14)	-0.0038 (11)	0.0090 (11)	0.0026 (11)
C21	0.0251 (13)	0.0464 (16)	0.0352 (14)	-0.0003 (12)	0.0082 (11)	0.0027 (12)
C22	0.0321 (14)	0.0412 (15)	0.0298 (13)	-0.0002 (12)	0.0060 (11)	0.0004 (11)
C23	0.0284 (13)	0.0419 (15)	0.0320 (14)	-0.0010 (11)	0.0026 (11)	0.0068 (12)
C24	0.0261 (13)	0.0413 (15)	0.0353 (14)	0.0022 (11)	0.0090 (11)	0.0056 (12)
C25	0.0324 (14)	0.0448 (16)	0.0338 (14)	0.0005 (12)	0.0077 (11)	-0.0002 (12)
C26	0.0313 (14)	0.0508 (17)	0.0333 (14)	-0.0026 (12)	0.0044 (11)	0.0001 (13)
C27	0.0492 (17)	0.0429 (16)	0.0339 (15)	0.0047 (13)	0.0108 (13)	-0.0043 (12)
C28	0.0472 (18)	0.0511 (19)	0.0510 (19)	-0.0071 (15)	0.0144 (15)	0.0035 (15)
C29	0.0358 (16)	0.066 (2)	0.0387 (16)	-0.0102 (15)	0.0038 (12)	0.0011 (15)
C30	0.0418 (17)	0.069 (2)	0.0424 (17)	-0.0033 (16)	0.0095 (14)	-0.0133 (16)
C31	0.097 (3)	0.052 (2)	0.0355 (17)	0.006 (2)	-0.0037 (18)	-0.0078 (15)
C32A	0.066 (3)	0.043 (2)	0.0354 (19)	-0.0070 (18)	0.0004 (17)	-0.0079 (16)

C32B	0.064 (5)	0.045 (5)	0.034 (5)	-0.008 (5)	-0.001 (5)	-0.006 (5)
C33	0.077 (3)	0.049 (2)	0.067 (2)	0.0024 (19)	-0.014 (2)	-0.0099 (18)
C34	0.082 (3)	0.066 (3)	0.074 (3)	0.006 (2)	-0.023 (2)	-0.011 (2)
C35A	0.0279 (19)	0.040(2)	0.089 (3)	0.0098 (17)	0.006 (2)	0.000(2)
C36A	0.0394 (19)	0.047 (2)	0.082 (3)	0.0142 (17)	0.0011 (19)	-0.007 (2)
C37A	0.043 (2)	0.059 (2)	0.074 (3)	0.0158 (18)	0.0034 (19)	-0.009 (2)
C38A	0.059 (2)	0.078 (3)	0.085 (4)	0.015 (2)	0.003 (3)	-0.002 (3)
C35B	0.027 (3)	0.035 (3)	0.087 (4)	0.009 (3)	0.006 (3)	0.000 (3)
C36B	0.037 (2)	0.048 (3)	0.082 (3)	0.012 (2)	0.004 (2)	-0.003 (2)
C37B	0.048 (2)	0.059 (3)	0.081 (3)	0.016 (2)	0.005 (3)	-0.005 (3)
C38B	0.058 (4)	0.065 (4)	0.085 (5)	0.020 (4)	0.006 (4)	-0.009 (4)
C39	0.0365 (14)	0.0352 (15)	0.0304 (14)	0.0007 (12)	-0.0008 (11)	0.0057 (11)
C40	0.0456 (17)	0.0414 (16)	0.0350 (15)	-0.0039 (13)	-0.0025 (12)	-0.0002 (12)
C41	0.059 (2)	0.065 (2)	0.0413 (18)	-0.0038 (17)	-0.0136 (16)	0.0034 (16)
C42	0.090 (3)	0.102 (4)	0.065 (3)	-0.020 (3)	-0.034 (2)	-0.004 (3)
C43	0.0253 (13)	0.0379 (15)	0.0464 (16)	-0.0003 (11)	0.0001 (11)	-0.0015 (12)
C44	0.0316 (14)	0.0448 (17)	0.0478 (17)	0.0073 (12)	-0.0052 (12)	-0.0026 (13)
C45	0.048 (2)	0.060 (2)	0.080 (3)	0.0170 (17)	-0.0227 (18)	-0.016 (2)
C46	0.089 (3)	0.079 (3)	0.118 (4)	0.034 (3)	-0.063 (3)	-0.017 (3)
08	0.0842 (18)	0.0429 (13)	0.0552 (15)	0.0171 (12)	0.0370 (13)	0.0126 (11)
C47	0.060 (2)	0.054 (2)	0.051 (2)	0.0039 (17)	0.0091 (16)	0.0125 (16)
C48	0.091 (3)	0.073 (3)	0.062 (3)	-0.001 (2)	0.006 (2)	-0.010 (2)

Geometric parameters (Å, °)

Sn1—O2	2.227 (2)	C30—H302	0.9800
Sn1—O4	2.1914 (16)	C30—H303	0.9800
Sn1—O5	2.9442 (18)	C31—C32A	1.494 (4)
Sn1—O7	2.0270 (16)	C31—C32B	1.515 (5)
Sn1—C31	2.094 (3)	C31—H311	0.9900
Sn1—C35A	2.115 (4)	C31—H312	0.9900
Sn1—C35B	2.121 (5)	С31—Н313	0.9900
Sn2—O1	2.2736 (18)	C31—H314	0.9900
Sn2—O4 ⁱ	2.7571 (18)	C32A—C33	1.531 (3)
Sn2—O7	2.0418 (16)	C32A—H321	0.9900
Sn2—O7 ⁱ	2.1864 (16)	C32A—H322	0.9900
Sn2—C39	2.128 (3)	C32B—C33	1.514 (5)
Sn2—C43	2.125 (3)	C32B—H323	0.9900
01—C1	1.239 (3)	C32B—H324	0.9900
O2—C1	1.237 (4)	C33—C34	1.484 (6)
O3—C11	1.372 (3)	С33—Н331	0.9900
O3—H3	0.85 (4)	С33—Н332	0.9900
O4—C14	1.294 (3)	С33—Н333	0.9900
O5—C14	1.243 (3)	С33—Н334	0.9900
O6—C24	1.368 (3)	C34—H341	0.9800
O6—H6	0.93 (4)	C34—H342	0.9800
N1—N2	1.255 (3)	C34—H343	0.9800
N1—C5	1.442 (3)	C35A—C36A	1.512 (4)

N2—C8	1.428 (3)	C35A—H351	0.9900
N3—N4	1.256 (3)	С35А—Н352	0.9900
N3—C18	1.432 (3)	C36A—C37A	1.519 (4)
N4—C21	1.421 (3)	C36A—H361	0.9900
C1—C2	1.497 (3)	C36A—H362	0.9900
C2—C7	1.385 (4)	C37A—C38A	1.518 (4)
C2—C3	1.386 (4)	C37A—H371	0.9900
C3—C4	1.391 (4)	C37A—H372	0.9900
C3—H31	0.9500	C38A—H381	0.9800
C4—C5	1.380 (4)	C38A—H382	0.9800
C4—H4	0.9500	C38A—H383	0.9800
C5—C6	1.390 (4)	C35B—C36B	1.518 (5)
С6—С7	1.386 (4)	C35B—H353	0.9900
С6—Н61	0.9500	C35B—H354	0.9900
С7—Н7	0.9500	C36B—C37B	1.513 (4)
C8—C13	1.389 (4)	С36В—Н363	0.9900
C8—C9	1.391 (4)	C36B—H364	0.9900
C9—C10	1.389 (4)	C37B—C38B	1.515 (4)
С9—Н9	0.9500	С37В—Н373	0.9900
C10—C11	1,404 (4)	C37B—H374	0.9900
C10—C27	1.504 (4)	C38B—H384	0.9800
C11—C12	1.395 (4)	C38B—H385	0.9800
C12—C13	1.391 (4)	C38B—H386	0.9800
C12—C28	1.508 (4)	C39—C40	1.513 (4)
C13—H13	0.9500	C39—H391	0.9900
C14-C15	1 491 (3)	C39—H392	0 9900
C15—C16	1 386 (4)	C40—C41	1 514 (4)
$C_{15} - C_{20}$	1 393 (4)	C40—H401	0.9900
C16 - C17	1 390 (4)	C40 - H402	0.9900
C16—H16	0.9500	C41 - C42	1.513(5)
C17 - C18	1 392 (4)	C41 - H411	0.9900
C17—H17	0.9500	C41 - H412	0.9900
C18 - C19	1 393 (4)	C42 - H421	0.9900
C19 - C20	1.379 (4)	C_{42} —H422	0.9800
C10 H10	0.9500	C42 H423	0.9800
C20_H20	0.9500	$C_{42} - 11_{423}$	1.521(4)
C_{20} C_{21} C_{26}	1.380(4)	$C_{43} = C_{44}$	0.0000
$C_{21} = C_{20}$	1.389(4) 1.307(4)	$C_{43} = H_{432}$	0.9900
$C_{21} = C_{22}$	1.397(4) 1.383(4)	C43 - 11432	1.514(4)
$C_{22} = C_{23}$	0.0500	$C_{44} = C_{43}$	0.0000
C_{22} C_{23} C_{24}	1.404(4)	C44 - H441	0.9900
$C_{23} = C_{24}$	1.404(4)	$C_{44} =$	0.9900
$C_{23} = C_{29}$	1.498 (4)	C45 = U451	1.324(3)
$C_{24} = C_{23}$	1.372 (4)	C_{4} C_{4	0.9900
$C_{23} = C_{20}$	1.392 (4)	$C43 - \Pi 432$	0.9900
$C_{23} = C_{30}$	1.311 (4)	C40 - H401	0.9800
C27_H271	0.9300	C40—H402	0.9800
$U_2/-H_2/1$	0.9800	C40—H403	0.9800
$C_2/-H_2/2$	0.9800	08-04/	1.423 (4)

С27—Н273	0.9800	O8—H8	0.91 (5)
C28—H281	0.9800	C47—C48	1.457 (5)
C28—H282	0.9800	C47—H471	0.9900
C28—H283	0.9800	С47—Н472	0.9900
C29—H291	0.9800	C48—H481	0.9800
С29—Н292	0.9800	C48—H482	0.9800
С29—Н293	0.9800	C48—H483	0.9800
С30—Н301	0.9800		
O2—Sn1—O4	170.96 (8)	C32A—C31—Sn1	118.7 (2)
O2—Sn1—O5	140.62 (7)	C32B—C31—Sn1	132.8 (6)
O2—Sn1—O7	91.70 (8)	C32A—C31—H311	107.6
O2—Sn1—C31	85.24 (14)	Sn1—C31—H311	107.6
O2—Sn1—C35A	84.4 (2)	C32A—C31—H312	107.6
O2—Sn1—C35B	91.4 (3)	Sn1—C31—H312	107.6
O4—Sn1—O5	48.40 (6)	H311—C31—H312	107.1
O4—Sn1—O7	79.26 (6)	C32B—C31—H313	104.0
O4—Sn1—C31	98.12 (12)	Sn1—C31—H313	104.0
O4—Sn1—C35A	99.5 (2)	C32B—C31—H314	104.0
O4—Sn1—C35B	91.8 (3)	Sn1—C31—H314	104.0
O5—Sn1—O7	127.63 (6)	H313—C31—H314	105.5
O5—Sn1—C31	77.16 (12)	C31—C32A—C33	113.1 (3)
O5—Sn1—C35A	81.2 (2)	C31—C32A—H321	109.0
O5—Sn1—C35B	78.9 (5)	C33—C32A—H321	109.0
O7—Sn1—C31	114.14 (11)	C31—C32A—H322	109.0
O7—Sn1—C35A	114.02 (18)	C33—C32A—H322	109.0
O7—Sn1—C35B	108.7 (4)	H321—C32A—H322	107.8
C31—Sn1—C35A	130.91 (17)	C33—C32B—C31	112.9 (5)
C31—Sn1—C35B	137.1 (4)	С33—С32В—Н323	109.0
$O1$ — $Sn2$ — $O4^{i}$	127.00 (6)	C31—C32B—H323	109.0
O1—Sn2—O7	92.10 (7)	С33—С32В—Н324	109.0
$O1$ — $Sn2$ — $O7^i$	168.16 (7)	C31—C32B—H324	109.0
O1—Sn2—C39	85.96 (10)	H323—C32B—H324	107.8
O1—Sn2—C43	86.21 (10)	C34—C33—C32B	134.2 (8)
O4 ⁱ —Sn2—O7	140.89 (6)	C34—C33—C32A	108.6 (3)
$O4^{i}$ — $Sn2$ — $O7^{i}$	64.84 (5)	С34—С33—Н331	110.0
$O4^{i}$ —Sn2—C39	76.37 (8)	С32А—С33—Н331	110.0
$O4^{i}$ —Sn2—C43	79.00 (9)	С34—С33—Н332	110.0
$O7$ — $Sn2$ — $O7^i$	76.07 (7)	С32А—С33—Н332	110.0
O7—Sn2—C39	109.29 (9)	H331—C33—H332	108.4
O7 ⁱ —Sn2—C39	97.91 (9)	С34—С33—Н333	103.6
O7—Sn2—C43	108.14 (9)	С32В—С33—Н333	103.6
O7 ⁱ —Sn2—C43	97.29 (9)	С34—С33—Н334	103.6
C39—Sn2—C43	141.97 (11)	С32В—С33—Н334	103.6
C1—O1—Sn2	136.90 (17)	H333—C33—H334	105.3
C1—O2—Sn1	140.2 (2)	C33—C34—H341	109.5
С11—О3—Н3	108 (2)	C33—C34—H342	109.5
C14—O4—Sn1	112.01 (15)	H341—C34—H342	109.5

C14—O4—Sn2 ⁱ	152.71 (15)	C33—C34—H343	109.5
$Sn1-O4-Sn2^{i}$	94.90 (6)	H341—C34—H343	109.5
C14—O5—Sn1	77.29 (14)	H342—C34—H343	109.5
С24—О6—Н6	116 (2)	C36A—C35A—Sn1	112.9 (3)
Sn1—O7—Sn2	135.02 (8)	C36A—C35A—H351	109.0
$Sn1-O7-Sn2^{i}$	120.87 (8)	Sn1—C35A—H351	109.0
$Sn2-O7-Sn2^{i}$	103.93 (7)	C36A—C35A—H352	109.0
N2—N1—C5	113.1 (2)	Sn1—C35A—H352	109.0
N1—N2—C8	114.9 (2)	H351—C35A—H352	107.8
N4—N3—C18	112.7 (2)	C35A—C36A—C37A	112.1 (4)
N3—N4—C21	114.6 (2)	C35A—C36A—H361	109.2
02-01-01	123.7(2)	C37A—C36A—H361	109.2
02-C1-C2	117 8 (3)	C35A - C36A - H362	109.2
01 - C1 - C2	118.6 (2)	C37A - C36A - H362	109.2
C7-C2-C3	119.6 (2)	H361—C36A—H362	107.9
C7-C2-C1	1202(3)	C_{38A} C_{37A} C_{36A}	113.0(5)
C_{3} C_{2} C_{1}	120.2(3)	$C_{38A} = C_{37A} = H_{371}$	109.0
$C_2 - C_3 - C_4$	120.2(3) 120.1(3)	$C_{36A} = C_{37A} = H_{371}$	109.0
$C_2 = C_3 = H_{31}$	120.0	$C_{38A} = C_{37A} = H_{372}$	109.0
C4-C3-H31	120.0	$C_{36A} = C_{37A} = H_{372}$	109.0
$C_{5} - C_{4} - C_{3}$	119 9 (3)	H371_C37A_H372	107.8
$C_5 - C_4 - H_4$	120.1	$C_{37A} - C_{38A} - H_{381}$	107.0
$C_3 - C_4 - H_4$	120.1	$C_{37A} = C_{38A} = H_{382}$	109.5
C4-C5-C6	120.1 120.4(2)	H381_C38A_H382	109.5
C4-C5-N1	1155(2)	$C_{37A} - C_{38A} - H_{383}$	109.5
C6-C5-N1	1240(2)	H381_C38A_H383	109.5
C7 - C6 - C5	119 3 (3)	H382—C38A—H383	109.5
C7 - C6 - H61	120.4	C_{36B} C_{35B} S_{n1}	127.6(7)
C5-C6-H61	120.1	$C_{36B} = C_{35B} = H_{353}$	105.4
C_{2} C_{7} C_{6}	120.7 (3)	Sn1-C35B-H353	105.1
C2	119.7	$C_{36B} = C_{35B} = H_{354}$	105.4
C6-C7-H7	119.7	Sn1—C35B—H354	105.4
C13 - C8 - C9	119.9 (2)	H353—C35B—H354	106.0
C13 - C8 - N2	115.1(2)	C37B-C36B-C35B	1119(5)
C9-C8-N2	125.0(2)	C37B-C36B-H363	109.2
C10-C9-C8	120.6(2)	C35B-C36B-H363	109.2
C10-C9-H9	119.7	C37B—C36B—H364	109.2
C8-C9-H9	119.7	C35B-C36B-H364	109.2
C9-C10-C11	118.1 (3)	H363—C36B—H364	107.9
C9—C10—C27	121.5 (3)	C36B-C37B-C38B	113.5 (6)
C11—C10—C27	120.5(2)	C36B—C37B—H373	108.9
03-011-012	115.7 (3)	C38B—C37B—H373	108.9
03-011-010	121.9 (3)	C36B—C37B—H374	108.9
C12—C11—C10	122.4 (2)	C38B—C37B—H374	108.9
C13—C12—C11	117.6 (3)	H373—C37B—H374	107.7
C13—C12—C28	121.9 (3)	C37B—C38B—H384	109.5
C11—C12—C28	120.4 (3)	C37B—C38B—H385	109.5
C8—C13—C12	121.3 (3)	H384—C38B—H385	109.5
	. /		

C8—C13—H13	119.4	C37B—C38B—H386	109.5
С12—С13—Н13	119.4	H384—C38B—H386	109.5
O5—C14—O4	121.6 (2)	H385—C38B—H386	109.5
O5—C14—C15	121.5 (2)	C40—C39—Sn2	115.66 (19)
O4—C14—C15	116.8 (2)	С40—С39—Н391	108.4
C16—C15—C20	119.6 (2)	Sn2—C39—H391	108.4
C16—C15—C14	119.7 (2)	С40—С39—Н392	108.4
C20—C15—C14	120.6 (2)	Sn2—C39—H392	108.4
C15—C16—C17	120.2 (3)	H391—C39—H392	107.4
C15—C16—H16	119.9	C39—C40—C41	111.9 (3)
C17—C16—H16	119.9	C39—C40—H401	109.2
C16—C17—C18	119.6 (3)	C41—C40—H401	109.2
С16—С17—Н17	120.2	С39—С40—Н402	109.2
С18—С17—Н17	120.2	C41—C40—H402	109.2
C17—C18—C19	120.4 (2)	H401—C40—H402	107.9
C17—C18—N3	116.4 (2)	C42—C41—C40	114.0 (3)
C19—C18—N3	123.1 (2)	C42—C41—H411	108.8
C_{20} C_{19} C_{18}	119.4 (3)	C40—C41—H411	108.8
C20-C19-H19	120.3	C42-C41-H412	108.8
C18—C19—H19	120.3	C40—C41—H412	108.8
C19-C20-C15	120.7 (3)	H411—C41—H412	107.7
C19—C20—H20	119.6	C41 - C42 - H421	109.5
C15—C20—H20	119.6	C41—C42—H422	109.5
C_{26} C_{21} C_{22}	120.0 (2)	H421—C42—H422	109.5
C26—C21—N4	115.8 (2)	C41—C42—H423	109.5
C22—C21—N4	124.1 (2)	H421-C42-H423	109.5
C23—C22—C21	120.5 (3)	H422-C42-H423	109.5
C23—C22—H22	119.7	C44—C43—Sn2	113.95 (19)
C21—C22—H22	119.7	C44—C43—H431	108.8
C22—C23—C24	118.2 (2)	Sn2—C43—H431	108.8
C22—C23—C29	121.7 (3)	C44—C43—H432	108.8
C24—C23—C29	120.0 (2)	Sn2—C43—H432	108.8
O6—C24—C25	122.3 (2)	H431—C43—H432	107.7
O6—C24—C23	115.4 (2)	C45—C44—C43	113.2 (3)
C25—C24—C23	122.2 (2)	C45—C44—H441	108.9
C26—C25—C24	117.9 (3)	C43—C44—H441	108.9
C26—C25—C30	120.2 (3)	C45—C44—H442	108.9
C24—C25—C30	121.8 (2)	C43—C44—H442	108.9
C21—C26—C25	120.9 (3)	H441—C44—H442	107.7
C21—C26—H26	119.5	C44—C45—C46	112.4 (3)
С25—С26—Н26	119.5	C44—C45—H451	109.1
С10—С27—Н271	109.5	C46—C45—H451	109.1
С10—С27—Н272	109.5	C44—C45—H452	109.1
H271—C27—H272	109.5	C46—C45—H452	109.1
С10—С27—Н273	109.5	H451—C45—H452	107.8
H271—C27—H273	109.5	C45—C46—H461	109.5
H272—C27—H273	109.5	C45—C46—H462	109.5
C12—C28—H281	109.5	H461—C46—H462	109.5

C12—C28—H282	109.5	C45—C46—H463	109.5
H281—C28—H282	109.5	H461—C46—H463	109.5
C12—C28—H283	109.5	H462—C46—H463	109.5
H281—C28—H283	109.5	С47—О8—Н8	113 (3)
H282—C28—H283	109.5	O8—C47—C48	111.4 (3)
С23—С29—Н291	109.5	O8—C47—H471	109.3
С23—С29—Н292	109.5	C48—C47—H471	109.3
H291—C29—H292	109.5	O8—C47—H472	109.3
С23—С29—Н293	109.5	С48—С47—Н472	109.3
H291—C29—H293	109.5	H471—C47—H472	108.0
H292—C29—H293	109.5	C47—C48—H481	109.5
С25—С30—Н301	109.5	C47—C48—H482	109.5
C25—C30—H302	109.5	H481—C48—H482	109.5
H301—C30—H302	109.5	C47—C48—H483	109.5
C25-C30-H303	109.5	H481—C48—H483	109.5
H301—C30—H303	109.5	H482—C48—H483	109.5
H302—C30—H303	109.5		10,00
11302 030 11303	107.0		
C5—N1—N2—C8	177.9 (2)	Q5-C14-C15-C16	-20.6(4)
C18 - N3 - N4 - C21	174.0(2)	04-C14-C15-C16	1561(2)
$s_{n1} = 02 = 01$	69(7)	05-C14-C15-C20	162.7(3)
Sn1 - 02 - C1 - C2	-1737(3)	04-C14-C15-C20	-20.6(4)
$sn^2 - 01 - 02$	-0.4(5)	C_{20} C_{15} C_{16} C_{17}	33(4)
$s_{n2} = 01 = 01 = 02$	-17979(19)	C_{14} C_{15} C_{16} C_{17}	-1734(2)
$0^{2}-C^{1}-C^{2}-C^{7}$	-1701(3)	C_{15} C_{16} C_{17} C_{18}	-23(4)
01 - C1 - C2 - C7	93(4)	C_{16} C_{17} C_{18} C_{19}	-0.5(4)
$0^{2}-0^{2}-0^{2}-0^{2}$	10.8(5)	$C_{16} - C_{17} - C_{18} - N_3$	176.2(2)
01 - C1 - C2 - C3	-1698(3)	N4 - N3 - C18 - C17	164.6(2)
$C_{1}^{-}C_{2}^{-}C_{3}^{-}C_{4}^{-}$	-10(5)	N4 N3 C18 C19	-188(4)
$C_1 - C_2 - C_3 - C_4$	1.0(3)	C_{17} C_{18} C_{19} C_{20}	22(4)
$C_1 = C_2 = C_3 = C_4$	1/0.0(5)	$N_{3} = C_{18} = C_{19} = C_{20}$	-1743(3)
$C_2 - C_3 - C_4 - C_5$	1.1(5)	$C_{18} = C_{19} = C_{20} = C_{15}$	-12(4)
$C_{3} = C_{4} = C_{5} = C_{0}$	1783(3)	$C_{16} = C_{15} = C_{20} = C_{15}$	-1.6(4)
$N_2 = N_1 = C_5 = C_4$	178.3(3)	$C_{10} = C_{15} = C_{20} = C_{19}$	1.0(4)
$N_2 = N_1 = C_5 = C_4$	-40(4)	$N_{14} = C_{13} = C_{20} = C_{13}$	175.1(2) 168.2(3)
12-11-05-06	-2.2(4)	$N_{3} = N_{4} = C_{21} = C_{20}$	-15.6(4)
$C_{+-}C_{5-}C_{6-}C_{7}$	2.2(4)	103 - 104 - 021 - 022	-1.6(4)
N1 = C3 = C0 = C7	-1/9.7(3) -0.6(4)	$V_{20} = C_{21} = C_{22} = C_{23}$	-1.0(4)
$C_{3} - C_{2} - C_{7} - C_{0}$	-0.0(4) -1707(3)	N4-C21-C22-C23	-1/7.7(3)
$C_1 = C_2 = C_1 = C_0$	-1/9.7(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	-2.0(4)
C_{3} C_{0} C_{1} C_{2} C_{1}	2.2(4)	$C_{21} = C_{22} = C_{23} = C_{29}$	1/5.9(3)
NI = N2 = C8 = C13	-1/2.0(2)	$C_{22} = C_{23} = C_{24} = 06$	-1/8.1(2)
NI - N2 - C8 - C9	5.7(4)	$C_{29} = C_{23} = C_{24} = C_{25}$	3.9 (4)
13 - 68 - 69 - 610	1.4(4)	$C_{22} = C_{23} = C_{24} = C_{23}$	4.3(4)
1N2 - C0 - C10 - C11	-1/0.0(3)	029 - 023 - 024 - 025	-1/3.0(3)
$C_{0} = C_{10} = C_{10} = C_{10}$	-0.1(4)	00-024-025-020	1/9.7(3)
$C_0 = C_1 = C_1 = C_2$	1/8.9 (3)	123 - 124 - 123 - 126	-2.9 (4)
C_{9} C_{10} C_{11} C_{3} C_{10} C_{11} C_{2}	-1/9.2(2)	$U_0 - U_2 - U_2 - U_3 U_3 - U_3 - U_3 - U_3 U_3 - $	-1.9(5)
C2/—C10—C11—O3	1.8 (4)	C23—C24—C25—C30	175.5 (3)

C9-C10-C11-C12	-0.1 (4)	C22—C21—C26—C25	3.1 (4)
C27—C10—C11—C12	-179.1 (3)	N4-C21-C26-C25	179.4 (3)
O3—C11—C12—C13	178.2 (3)	C24—C25—C26—C21	-0.9 (4)
C10-C11-C12-C13	-1.0 (4)	C30-C25-C26-C21	-179.3 (3)
O3—C11—C12—C28	-4.3 (4)	Sn1—C31—C32A—C33	172.7 (3)
C10-C11-C12-C28	176.6 (3)	Sn1—C31—C32B—C33	-141.5 (7)
C9—C8—C13—C12	-2.5 (4)	C31—C32B—C33—C34	120.3 (10)
N2-C8-C13-C12	175.8 (3)	C31—C32A—C33—C34	175.5 (3)
C11—C12—C13—C8	2.3 (4)	Sn1—C35A—C36A—C37A	156.1 (4)
C28—C12—C13—C8	-175.2 (3)	C35A—C36A—C37A—C38A	-75.5 (7)
Sn1—O5—C14—O4	-7.2 (2)	Sn1—C35B—C36B—C37B	-67.6 (15)
Sn1-05-C14-C15	169.3 (2)	C35B—C36B—C37B—C38B	169.0 (12)
Sn1—O4—C14—O5	10.2 (3)	Sn2—C39—C40—C41	177.4 (2)
Sn2 ⁱ O4C14O5	-179.9 (2)	C39—C40—C41—C42	-176.2 (3)
Sn1—O4—C14—C15	-166.49 (17)	Sn2—C43—C44—C45	-171.4 (2)
Sn2 ⁱ O4C14C15	3.5 (5)	C43—C44—C45—C46	179.3 (4)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3…O6 ⁱⁱ	0.85 (4)	2.05 (4)	2.801 (3)	146 (3)
O6—H6···O8 ⁱⁱⁱ	0.93 (4)	1.71 (4)	2.599 (3)	159 (4)
O8—H8…O5	0.91 (5)	1.82 (5)	2.663 (3)	154 (4)

Symmetry codes: (ii) *x*+2, *y*, *z*-1; (iii) *x*-1, -*y*+1/2, *z*+1/2.

Octabutyltetrakis{(*E*)-3-[(2-hydroxybenzylidene)amino]propanoato}di- μ_3 -oxido-tetratin(IV) (V)

Crystal data

Z = 2
F(000) = 1768
$D_{\rm x} = 1.446 {\rm ~Mg} {\rm ~m}^{-3}$
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 106136 reflections
$\theta = 2.0 - 25.0^{\circ}$
$\mu = 1.30 \text{ mm}^{-1}$
T = 160 K
Plate, yellow
$0.25 \times 0.20 \times 0.05 \text{ mm}$
$T_{\min} = 0.358, T_{\max} = 0.537$
68065 measured reflections
14030 independent reflections
8004 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.107$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$h = -14 \rightarrow 14$
$k = -17 \rightarrow 17$
$l = -28 \rightarrow 28$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0465P)^2 + 1.4894P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 1.20 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -1.11 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: hexane / chloroform Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: on a glass fibre Mosaicity (deg.): 0.885 (1) Frames collected: 539 Seconds exposure per frame: 16 Degrees rotation per frame: 1.1 Crystal-detector distance (mm): 33.8 Client: Tushar Basu Sample code: TSBB-71 (L0403)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	0.38021 (3)	0.02573 (3)	0.23737 (2)	0.03287 (12)	
Sn2	0.38814 (3)	0.28443 (3)	0.22852 (2)	0.03121 (12)	
Sn3	0.60632 (3)	0.15581 (3)	0.26223 (2)	0.03134 (12)	
Sn4	0.61477 (3)	0.41241 (3)	0.25625 (2)	0.03435 (13)	
01	0.5272 (3)	-0.0175 (3)	0.27270 (16)	0.0351 (10)	
O2	0.4760 (4)	-0.1604 (3)	0.27374 (19)	0.0491 (12)	
03	0.8718 (4)	-0.0556 (3)	0.1265 (2)	0.0649 (14)	
Н3	0.845980	-0.084544	0.162059	0.097*	
O4	0.2463 (3)	0.0988 (3)	0.19408 (17)	0.0392 (10)	
05	0.2152 (3)	0.2340 (3)	0.22109 (18)	0.0400 (10)	
O6	-0.1493 (4)	0.0000 (3)	0.3391 (2)	0.0546 (12)	
H6	-0.113764	0.032733	0.305975	0.082*	
O7	0.4375 (3)	0.1493 (2)	0.24415 (15)	0.0324 (10)	
08	0.5543 (3)	0.2917 (2)	0.24699 (17)	0.0348 (10)	
09	0.4733 (3)	0.4609 (3)	0.21652 (17)	0.0372 (10)	
O10	0.5336 (4)	0.5998 (3)	0.2193 (2)	0.0501 (12)	
011	0.1346 (4)	0.4953 (3)	0.3665 (2)	0.0639 (14)	
H11	0.154235	0.528340	0.331607	0.096*	
012	0.7414 (3)	0.3336 (3)	0.30478 (17)	0.0419 (11)	
013	0.7794 (3)	0.2045 (3)	0.27115 (18)	0.0397 (10)	
O14	1.1290 (4)	0.4380 (3)	0.1734 (2)	0.0595 (13)	
H14	1.097150	0.402687	0.206286	0.089*	
N1	0.7526 (4)	-0.1796 (3)	0.2140 (2)	0.0432 (14)	
N2	-0.0146 (4)	0.0327 (4)	0.2316 (2)	0.0420 (13)	

N3	0.2564 (4)	0.6223 (4)	0.2797 (3)	0.0482 (14)
N4	0.9972 (4)	0.3938 (4)	0.2827 (2)	0.0422 (13)
C1	0.5443 (6)	-0.1067 (4)	0.2818 (3)	0.0371 (15)
C2	0.6454 (5)	-0.1407 (4)	0.3060 (3)	0.0430 (16)
H21	0.619058	-0.165257	0.349583	0.052*
H22	0.700041	-0.087644	0.298497	0.052*
C3	0.7073 (6)	-0.2173(4)	0.2778(3)	0.0510(18)
H31	0 771145	-0.240606	0 296234	0.061*
H32	0.652973	-0.270324	0.284672	0.061*
C4	0.7150(5)	-0.2121(4)	0.1774(3)	0.0442(17)
С-1 Н4	0.661028	-0.263207	0.192023	0.053*
C5	0.7517 (6)	-0.1739(4)	0.112023 0.1147(3)	0.035 0.0471(17)
C6	0.7517(0) 0.8268(6)	-0.0944(5)	0.1147(3) 0.0007(3)	0.0471(17) 0.0536(10)
C0	0.8208(0) 0.8536(8)	-0.0556(6)	0.0308(4)	0.0330(19)
U7	0.002000	-0.001185	0.0308 (4)	0.001 (3)
П/ С9	0.902099	-0.001183	0.013103	0.098°
	0.8115 (8)	-0.0944(7)	-0.0000(4)	0.087 (5)
H8	0.830824	-0.066//3	-0.04804/	0.104^{*}
09	0.7398 (8)	-0.1/42(/)	0.0157 (4)	0.084 (3)
H9	0.711990	-0.201968	-0.010488	0.101*
C10	0.7100 (7)	-0.2121 (6)	0.0756 (4)	0.068 (2)
HIO	0.659773	-0.2655/9	0.090837	0.082*
C11	0.1872 (5)	0.1706 (4)	0.1998 (2)	0.0293 (14)
C12	0.0828 (5)	0.1821 (4)	0.1759 (3)	0.0374 (15)
H121	0.103123	0.223926	0.135549	0.045*
H122	0.023434	0.213047	0.201325	0.045*
C13	0.0318 (5)	0.0912 (4)	0.1724 (3)	0.0447 (17)
H131	-0.030228	0.105022	0.151281	0.054*
H132	0.092047	0.057270	0.149501	0.054*
C14	0.0147 (5)	-0.0521 (4)	0.2431 (3)	0.0417 (16)
H141	0.067197	-0.074667	0.212852	0.050*
C15	-0.0285 (5)	-0.1157 (4)	0.3004 (3)	0.0427 (16)
C16	-0.1085 (5)	-0.0879 (4)	0.3464 (3)	0.0470 (17)
C17	-0.1522 (6)	-0.1512 (5)	0.4001 (3)	0.0556 (19)
H17	-0.208156	-0.133009	0.430990	0.067*
C18	-0.1123 (7)	-0.2420 (5)	0.4079 (4)	0.066 (2)
H18	-0.141016	-0.285644	0.444647	0.079*
C19	-0.0322 (7)	-0.2697(5)	0.3634 (4)	0.069 (2)
H19	-0.006126	-0.332012	0.369458	0.083*
C20	0.0099 (6)	-0.2069(5)	0.3103 (3)	0.0523 (18)
H20	0.066025	-0.225865	0.279839	0.063*
C21	0.2455 (5)	-0.0351(4)	0.3123 (3)	0.0433 (16)
H211	0 181242	0.008841	0.315108	0.052*
H212	0.216866	-0.092719	0.305395	0.052*
C22	0.2778 (5)	-0.0595(5)	0.3717(3)	0.032
H221	0 303150	-0.001849	0 379999	0.060*
H222	0 343214	-0 102311	0.369154	0.060*
C23	0.1767 (6)	-0.1063(5)	0.4234(3)	0.066 (2)
H231	0 111218	-0.063578	0 425921	0.079*
11401	0.111410	0.0000070	0.140741	0.012

H232	0.151524	-0.164077	0.415209	0.079*
C24	0.2094 (7)	-0.1304 (6)	0.4828 (3)	0.084 (3)
H241	0.279177	-0.167172	0.479287	0.126*
H242	0.146329	-0.166835	0.513454	0.126*
H243	0.223472	-0.072666	0.493938	0.126*
C25	0.4506 (5)	-0.0064(4)	0.1540 (2)	0.0407 (16)
H251	0.471649	0.052939	0.123549	0.049*
H252	0.522337	-0.040680	0.155886	0.049*
C26	0.3726 (6)	-0.0638(4)	0.1340 (3)	0.0496 (18)
H261	0.358661	-0.125890	0.162134	0.060*
H262	0.297587	-0.033041	0.136507	0.060*
C27	0.4171 (7)	-0.0777(6)	0.0726 (3)	0.072(2)
H271	0 493625	-0.105990	0.069738	0.086*
H272	0.428022	-0.015677	0.044452	0.086*
C28	0.3427(8)	-0.1376(5)	0.0534(3)	0.085(3)
H281	0.342861	-0.202373	0.075968	0.128*
H282	0.372584	-0.134524	0.010877	0.128*
H283	0.263859	-0.115082	0.060624	0.128*
C29	0.203035	0.3094(4)	0.3104(2)	0.0396 (16)
H291	0.344545	0.336341	0.328884	0.0390 (10)
H297	0.233134	0.355677	0.302931	0.048*
C30	0.233134 0.2344(5)	0.333077 0.2202 (4)	0.3532(3)	0.048(17)
H301	0.172808	0.199677	0.337725	0.054*
H302	0.201712	0.170452	0.354718	0.054*
C31	0.291712	0.170452 0.2317(5)	0.4159 (3)	0.0548(19)
U211	0.131501	0.2517 (5)	0.4139 (5)	0.0548 (19)
ПЭП Ц212	0.131301	0.203002	0.414280	0.000*
C22	0.244997 0.1124 (7)	0.244033	0.4555 (2)	0.000°
U221	0.1134(7)	0.1439 (0)	0.4333(3)	0.088 (5)
П321	0.030093	0.127223	0.430131	0.132*
П322	0.075700	0.130392	0.493900	0.132*
H323	0.105/55	0.092183	0.401000	0.132^{*}
C33	0.4293 (5)	0.3434 (4)	0.1358 (2)	0.0404 (16)
H331	0.365938	0.3844/4	0.126804	0.048*
H332	0.499367	0.383659	0.125534	0.048*
C34	0.4495 (6)	0.2764 (4)	0.0953 (3)	0.0494 (18)
H341	0.380680	0.234594	0.105779	0.059*
H342	0.515290	0.236991	0.102394	0.059*
C35	0.4742 (6)	0.3249 (5)	0.0293 (3)	0.065 (2)
H351	0.475464	0.277138	0.006190	0.077*
H352	0.410879	0.367490	0.022702	0.077*
C36	0.5858 (6)	0.3796 (6)	0.0066 (3)	0.079 (3)
H361	0.582268	0.431327	0.026348	0.118*
H362	0.599666	0.404677	-0.036349	0.118*
H363	0.648580	0.338785	0.015073	0.118*
C37	0.5619 (5)	0.0987 (4)	0.3557 (2)	0.0356 (15)
H371	0.494429	0.055586	0.365742	0.043*
H372	0.626666	0.061251	0.366409	0.043*
C38	0.5335 (5)	0.1705 (4)	0.3940 (2)	0.0381 (15)

H381	0.602607	0.210739	0.386683	0.046*
H382	0.471993	0.210820	0.381934	0.046*
C39	0.4949 (6)	0.1253 (5)	0.4595 (3)	0.0544 (19)
H391	0.555918	0.084121	0.471401	0.065*
H392	0.425088	0.085813	0.466882	0.065*
C40	0.4685 (6)	0.1967 (5)	0.4977 (3)	0.068 (2)
H401	0.536637	0.237104	0.489802	0.102*
H402	0.447513	0.164027	0.539809	0.102*
H403	0.404351	0.234778	0.488120	0.102*
C41	0.7007 (5)	0.1298 (4)	0.1803 (2)	0.0364 (15)
H411	0.754476	0.078877	0.188434	0.044*
H412	0.646479	0.107701	0.160929	0.044*
C42	0.7696 (5)	0.2149 (4)	0.1371 (3)	0.0433 (16)
H421	0.716977	0.267374	0.130883	0.052*
H422	0.827981	0.234357	0.155086	0.052*
C43	0.8301 (5)	0.1957 (5)	0.0769 (3)	0.0477 (17)
H431	0.868498	0.135001	0.083301	0.057*
H432	0.771960	0.190993	0.054653	0.057*
C44	0.9186 (6)	0.2716 (5)	0.0401 (3)	0.069 (2)
H441	0.879946	0.330760	0.030660	0.104*
H442	0.958892	0.254428	0.003235	0.104*
H443	0.974191	0.278586	0.062772	0.104*
C45	0.4637 (6)	0.5509 (4)	0.2090 (3)	0.0391 (16)
C46	0.3637 (6)	0.5915 (5)	0.1857 (3)	0.0522 (18)
H461	0.307152	0.540893	0.190781	0.063*
H462	0.390804	0.620252	0.142626	0.063*
C47	0.3054 (6)	0.6647 (4)	0.2175 (3)	0.0533 (19)
H471	0.362281	0.714395	0.213773	0.064*
H472	0.243916	0.693754	0.198870	0.064*
C48	0.2906 (5)	0.6530 (4)	0.3187 (3)	0.0477 (18)
H48	0.344980	0.703835	0.305337	0.057*
C49	0.2508 (6)	0.6143 (4)	0.3820 (3)	0.0492 (18)
C50	0.1750 (6)	0.5353 (5)	0.4028 (3)	0.0558 (19)
C51	0.1390 (7)	0.4968 (6)	0.4631 (4)	0.074 (2)
H51	0.089415	0.442877	0.477315	0.089*
C52	0.1745 (8)	0.5359 (7)	0.5027 (4)	0.088 (3)
H52	0.149068	0.508946	0.544147	0.106*
C53	0.2465 (8)	0.6135 (7)	0.4830 (4)	0.086 (3)
H53	0.269119	0.641152	0.510726	0.104*
C54	0.2858 (7)	0.6511 (5)	0.4234 (4)	0.071 (2)
H54	0.337937	0.703355	0.410022	0.086*
C55	0.8014 (5)	0.2636 (4)	0.2982 (2)	0.0320 (14)
C56	0.8970 (5)	0.2426 (4)	0.3284 (3)	0.0416 (16)
H561	0.959387	0.212966	0.303666	0.050*
H562	0.868522	0.197361	0.366945	0.050*
C57	0.9460 (5)	0.3298 (4)	0.3391 (3)	0.0463 (17)
H571	0.883720	0.361065	0.362789	0.056*
H572	1.004904	0.311598	0.361872	0.056*

C58	0.9686 (5)	0.4797 (5)	0.2747 (3)	0.0443 (17)
H58	0.916246	0.498929	0.306425	0.053*
C59	1.0122 (5)	0.5489 (4)	0.2197 (3)	0.0439 (17)
C60	1.0894 (6)	0.5256 (5)	0.1713 (3)	0.0486 (18)
C61	1.1278 (6)	0.5926 (5)	0.1191 (3)	0.061 (2)
H61	1.178796	0.575992	0.085944	0.073*
C62	1.0929 (7)	0.6824 (5)	0.1149 (4)	0.063 (2)
H62	1.120232	0.728209	0.078914	0.076*
C63	1.0179 (7)	0.7071 (5)	0.1628 (4)	0.069 (2)
H63	0.994896	0.770025	0.159890	0.082*
C64	0.9769 (6)	0.6408 (5)	0.2146 (4)	0.0572 (19)
H64	0.924062	0.657759	0.247072	0.069*
C65	0.5379 (5)	0.4422 (4)	0.3400 (2)	0.0388 (15)
H651	0.458205	0.462367	0.340595	0.047*
H652	0.533589	0.384186	0.371469	0.047*
C66	0.6028 (6)	0.5173 (4)	0.3539 (3)	0.0518 (18)
H661	0.685489	0.502701	0.346043	0.062*
H662	0.595041	0.577902	0.326605	0.062*
C67	0.5619 (7)	0.5274 (5)	0.4168 (3)	0.062 (2)
H671	0.578024	0.469346	0.443892	0.074*
H672	0.477484	0.534837	0.426117	0.074*
C68	0.6181 (7)	0.6098 (5)	0.4283 (3)	0.079 (3)
H681	0.701740	0.608241	0.413343	0.118*
H682	0.598895	0.606035	0.471086	0.118*
H683	0.589763	0.668154	0.407839	0.118*
C69	0.7591 (5)	0.4686 (4)	0.1851 (3)	0.0467 (17)
H691	0.788968	0.524488	0.193602	0.056*
H692	0.820284	0.421914	0.184689	0.056*
C70	0.7376 (5)	0.4962 (4)	0.1236 (3)	0.0443 (17)
H701	0.678541	0.544633	0.123013	0.053*
H702	0.706954	0.441030	0.114698	0.053*
C71	0.8458 (6)	0.5334 (5)	0.0757 (3)	0.0531 (19)
H711	0.874022	0.590386	0.083620	0.064*
H712	0.906133	0.486212	0.077909	0.064*
C72	0.8279 (6)	0.5567 (5)	0.0135 (3)	0.066 (2)
H721	0.799710	0.500705	0.005254	0.100*
H722	0.901014	0.578564	-0.015310	0.100*
H723	0.771244	0.605815	0.010237	0.100*

Atomic displacement parameters $(Å^2)$

45 (19)
30 (19)
58 (19)
2 (2)
7 (19)
(2)

Acta Cryst. (2021). C77, 209-220

O3	0.071 (4)	0.050 (3)	0.071 (3)	-0.016 (3)	-0.011 (3)	-0.015 (3)
O4	0.032 (2)	0.038 (2)	0.054 (3)	0.007 (2)	-0.018 (2)	-0.016 (2)
05	0.031 (2)	0.038 (3)	0.056 (3)	0.004 (2)	-0.016 (2)	-0.016 (2)
O6	0.047 (3)	0.046 (3)	0.063 (3)	0.003 (2)	-0.001(2)	-0.010(2)
O7	0.043 (2)	0.026 (2)	0.033 (2)	0.0025 (18)	-0.0160 (19)	-0.0096 (17)
08	0.021 (2)	0.031 (2)	0.054 (3)	0.0026 (17)	-0.0106 (19)	-0.0093 (19)
09	0.035 (2)	0.028 (2)	0.052 (3)	-0.0007 (19)	-0.015 (2)	-0.0107 (19)
O10	0.046 (3)	0.033 (3)	0.074 (3)	0.001 (2)	-0.017 (2)	-0.016 (2)
O11	0.068 (4)	0.053 (3)	0.070 (3)	-0.007 (3)	-0.009(3)	-0.020(3)
O12	0.035 (3)	0.041 (3)	0.054 (3)	0.005 (2)	-0.017 (2)	-0.014(2)
013	0.030 (2)	0.041 (3)	0.053 (3)	0.0041 (19)	-0.014 (2)	-0.017(2)
O14	0.052 (3)	0.054 (3)	0.068 (3)	0.005 (2)	0.002 (3)	-0.024(3)
N1	0.040 (3)	0.028 (3)	0.059 (4)	0.011 (2)	-0.008 (3)	-0.012(3)
N2	0.028 (3)	0.043 (3)	0.056 (4)	-0.001 (2)	-0.011(3)	-0.013 (3)
N3	0.041 (3)	0.041 (3)	0.068 (4)	0.013 (3)	-0.020 (3)	-0.018(3)
N4	0.033 (3)	0.047 (3)	0.055 (4)	0.001 (3)	-0.014 (3)	-0.025(3)
C1	0.062 (5)	0.015 (3)	0.040 (4)	0.004 (3)	-0.022 (3)	-0.011(3)
C2	0.040 (4)	0.043 (4)	0.050 (4)	0.017 (3)	-0.024 (3)	-0.007(3)
C3	0.043 (4)	0.040 (4)	0.065 (5)	0.011 (3)	-0.012 (4)	-0.007(3)
C4	0.043 (4)	0.030 (4)	0.062 (5)	0.007 (3)	-0.013 (4)	-0.017(3)
C5	0.048 (4)	0.042 (4)	0.056 (5)	0.014 (3)	-0.014 (4)	-0.024(4)
C6	0.052 (5)	0.049 (4)	0.053 (5)	0.004 (4)	-0.002(4)	-0.012 (4)
C7	0.104 (7)	0.068 (6)	0.057 (6)	-0.012 (5)	0.004 (5)	-0.009(5)
C8	0.101 (8)	0.098 (7)	0.053 (5)	0.017 (6)	-0.006 (5)	-0.019(5)
C9	0.087 (7)	0.096 (7)	0.087 (7)	0.017 (6)	-0.032(6)	-0.044 (6)
C10	0.061 (5)	0.071 (5)	0.078 (6)	0.008 (4)	-0.015 (5)	-0.032(5)
C11	0.025 (3)	0.030 (3)	0.027 (3)	0.005 (3)	-0.001 (3)	-0.002(3)
C12	0.029 (3)	0.045 (4)	0.038 (4)	0.003 (3)	-0.015 (3)	-0.006(3)
C13	0.033 (4)	0.059 (4)	0.049 (4)	0.003 (3)	-0.019 (3)	-0.017 (4)
C14	0.033 (4)	0.047 (4)	0.054 (4)	0.000 (3)	-0.013 (3)	-0.026(3)
C15	0.032 (4)	0.037 (4)	0.062 (5)	0.000 (3)	-0.016 (3)	-0.013 (3)
C16	0.040 (4)	0.037 (4)	0.066 (5)	-0.001 (3)	-0.019 (4)	-0.010 (4)
C17	0.041 (4)	0.059 (5)	0.061 (5)	-0.005 (4)	-0.010 (4)	-0.006 (4)
C18	0.073 (6)	0.042 (4)	0.079 (6)	-0.007 (4)	-0.030(5)	0.006 (4)
C19	0.058 (5)	0.049 (5)	0.111 (7)	0.005 (4)	-0.039(5)	-0.022(5)
C20	0.041 (4)	0.045 (4)	0.074 (5)	0.004 (3)	-0.017 (4)	-0.018 (4)
C21	0.038 (4)	0.044 (4)	0.045 (4)	-0.007 (3)	-0.008(3)	-0.007 (3)
C22	0.039 (4)	0.053 (4)	0.052 (4)	-0.001 (3)	-0.006 (3)	-0.010 (3)
C23	0.052 (5)	0.090 (6)	0.044 (4)	-0.007 (4)	-0.001 (4)	-0.004 (4)
C24	0.074 (6)	0.114 (7)	0.055 (5)	0.007 (5)	-0.011(5)	-0.008(5)
C25	0.045 (4)	0.037 (4)	0.039 (4)	0.000 (3)	-0.007 (3)	-0.011 (3)
C26	0.061 (5)	0.041 (4)	0.047 (4)	-0.009(3)	-0.011 (4)	-0.013 (3)
C27	0.079 (6)	0.091 (6)	0.061 (5)	0.000 (5)	-0.022 (4)	-0.041(5)
C28	0.121 (8)	0.072 (6)	0.087 (6)	0.008 (5)	-0.045 (6)	-0.044(5)
C29	0.035 (4)	0.040 (4)	0.050 (4)	0.009 (3)	-0.011 (3)	-0.023 (3)
C30	0.032 (4)	0.057 (4)	0.045 (4)	-0.001 (3)	-0.006 (3)	-0.014 (3)
C31	0.039 (4)	0.090 (6)	0.042 (4)	0.009 (4)	-0.011 (3)	-0.028 (4)
C32	0.066 (6)	0.128 (8)	0.052 (5)	-0.013 (5)	0.011 (4)	-0.009 (5)
	~ /	\[~ /	× /		× /

C33	0.045 (4)	0.035 (3)	0.040 (4)	0.004 (3)	-0.012 (3)	-0.005 (3)
C34	0.052 (4)	0.050 (4)	0.047 (4)	-0.006 (3)	-0.011 (3)	-0.014 (3)
C35	0.060 (5)	0.080 (5)	0.057 (5)	-0.011 (4)	-0.013 (4)	-0.022 (4)
C36	0.064 (5)	0.108 (7)	0.052 (5)	-0.007 (5)	-0.006 (4)	-0.006 (5)
C37	0.031 (3)	0.027 (3)	0.046 (4)	-0.004 (3)	-0.007 (3)	-0.006 (3)
C38	0.036 (4)	0.037 (4)	0.041 (4)	0.002 (3)	-0.006 (3)	-0.014 (3)
C39	0.058 (5)	0.054 (4)	0.051 (4)	-0.009 (4)	-0.011 (4)	-0.013 (4)
C40	0.069 (5)	0.086 (6)	0.047 (4)	0.002 (5)	-0.002 (4)	-0.027 (4)
C41	0.024 (3)	0.034 (3)	0.056 (4)	0.005 (3)	-0.009 (3)	-0.024 (3)
C42	0.037 (4)	0.041 (4)	0.050 (4)	0.002 (3)	-0.008 (3)	-0.009 (3)
C43	0.044 (4)	0.059 (4)	0.042 (4)	0.004 (3)	-0.017 (3)	-0.010 (3)
C44	0.054 (5)	0.095 (6)	0.048 (5)	-0.008 (4)	-0.005 (4)	-0.005 (4)
C45	0.049 (4)	0.027 (4)	0.041 (4)	0.006 (3)	-0.014 (3)	-0.005 (3)
C46	0.056 (5)	0.049 (4)	0.058 (4)	0.015 (4)	-0.028 (4)	-0.012 (4)
C47	0.048 (4)	0.042 (4)	0.068 (5)	0.014 (3)	-0.023 (4)	-0.002 (4)
C48	0.032 (4)	0.033 (4)	0.076 (5)	0.005 (3)	-0.013 (4)	-0.010 (4)
C49	0.041 (4)	0.038 (4)	0.070 (5)	0.006 (3)	-0.016 (4)	-0.015 (4)
C50	0.052 (5)	0.052 (5)	0.066 (5)	0.017 (4)	-0.013 (4)	-0.023 (4)
C51	0.073 (6)	0.065 (5)	0.081 (6)	0.008 (4)	-0.012 (5)	-0.020 (5)
C52	0.101 (8)	0.084 (7)	0.067 (6)	0.020 (6)	-0.011 (6)	-0.003 (5)
C53	0.102 (8)	0.093 (7)	0.082 (7)	0.019 (6)	-0.040 (6)	-0.036 (6)
C54	0.068 (6)	0.063 (5)	0.095 (7)	-0.003 (4)	-0.034 (5)	-0.024 (5)
C55	0.032 (4)	0.038 (4)	0.030 (3)	0.013 (3)	-0.013 (3)	-0.010 (3)
C56	0.040 (4)	0.044 (4)	0.047 (4)	0.007 (3)	-0.024 (3)	-0.010 (3)
C57	0.035 (4)	0.065 (5)	0.047 (4)	-0.003 (3)	-0.018 (3)	-0.020 (4)
C58	0.035 (4)	0.052 (4)	0.057 (4)	0.002 (3)	-0.017 (3)	-0.030 (4)
C59	0.028 (4)	0.046 (4)	0.061 (5)	-0.003 (3)	-0.014 (3)	-0.016 (4)
C60	0.038 (4)	0.047 (4)	0.069 (5)	0.000 (3)	-0.023 (4)	-0.021 (4)
C61	0.049 (5)	0.065 (5)	0.069 (5)	0.002 (4)	-0.017 (4)	-0.016 (4)
C62	0.066 (5)	0.057 (5)	0.071 (6)	-0.004 (4)	-0.036 (5)	-0.003 (4)
C63	0.055 (5)	0.054 (5)	0.114 (7)	0.012 (4)	-0.047 (5)	-0.026 (5)
C64	0.041 (4)	0.052 (5)	0.085 (6)	0.006 (4)	-0.018 (4)	-0.027 (4)
C65	0.037 (4)	0.037 (4)	0.047 (4)	0.008 (3)	-0.016 (3)	-0.015 (3)
C66	0.055 (5)	0.049 (4)	0.054 (4)	-0.002 (3)	-0.010 (4)	-0.018 (3)
C67	0.088 (6)	0.057 (5)	0.048 (4)	-0.005 (4)	-0.022 (4)	-0.019 (4)
C68	0.130 (8)	0.058 (5)	0.057 (5)	-0.017 (5)	-0.024 (5)	-0.027 (4)
C69	0.028 (4)	0.050 (4)	0.058 (4)	-0.002 (3)	-0.006 (3)	-0.009 (3)
C70	0.030 (4)	0.047 (4)	0.053 (4)	0.002 (3)	-0.007 (3)	-0.010 (3)
C71	0.046 (4)	0.058 (5)	0.050 (4)	-0.007 (4)	-0.004 (4)	-0.010 (4)
C72	0.053 (5)	0.076 (5)	0.059 (5)	-0.017 (4)	0.002 (4)	-0.008 (4)

Geometric parameters (Å, °)

Sn1—O1	2.157 (4)	C29—C30	1.527 (8)	
Sn1—O2	2.962 (4)	C29—H291	0.9900	
Sn1—O4	2.238 (4)	C29—H292	0.9900	
Sn1—O7	2.021 (4)	C30—C31	1.518 (8)	
Sn1—C21	2.125 (5)	C30—H301	0.9900	

Acta Cryst. (2021). C77, 209-220

Sn1—C25	2.118 (6)	С30—Н302	0.9900
Sn2—O5	2.289 (4)	C31—C32	1.535 (9)
Sn2—O7	2.035 (4)	С31—Н311	0.9900
Sn2—O8	2.159 (4)	С31—Н312	0.9900
Sn2—O9	2.749 (4)	С32—Н321	0.9800
Sn2—C29	2.115 (5)	С32—Н322	0.9800
Sn2—C33	2.119 (5)	С32—Н323	0.9800
Sn3—O1	2.687 (4)	C33—C34	1.513 (8)
Sn3—O7	2.185 (4)	С33—Н331	0.9900
Sn3—O8	2.054 (4)	С33—Н332	0.9900
Sn3—O13	2.295 (4)	C34—C35	1.529 (8)
Sn3—C37	2.130 (5)	C34—H341	0.9900
Sn3—C41	2.117 (5)	C34—H342	0.9900
Sn4—O8	2.022 (4)	C35—C36	1.496 (9)
Sn4—O9	2.170 (4)	С35—Н351	0.9900
Sn4—O10	2.908 (4)	С35—Н352	0.9900
Sn4—O12	2.267 (4)	C36—H361	0.9800
Sn4—C65	2.125 (6)	C36—H362	0.9800
Sn4—C69	2.129 (5)	С36—Н363	0.9800
O1—C1	1.299 (6)	C37—C38	1.532 (7)
O2—C1	1.236 (7)	С37—Н371	0.9900
O3—C6	1.355 (8)	С37—Н372	0.9900
O3—H3	0.8400	C38—C39	1.509 (8)
O4—C11	1.270 (6)	C38—H381	0.9900
O5—C11	1.254 (6)	C38—H382	0.9900
O6—C16	1.357 (7)	C39—C40	1.526 (9)
О6—Н6	0.8400	С39—Н391	0.9900
O9—C45	1.299 (7)	С39—Н392	0.9900
O10—C45	1.230 (7)	C40—H401	0.9800
O11—C50	1.345 (8)	C40—H402	0.9800
O11—H11	0.8400	C40—H403	0.9800
O12—C55	1.257 (6)	C41—C42	1.535 (7)
O13—C55	1.270 (7)	C41—H411	0.9900
O14—C60	1.355 (7)	C41—H412	0.9900
O14—H14	0.8400	C42—C43	1.528 (8)
N1—C4	1.267 (8)	C42—H421	0.9900
N1—C3	1.463 (8)	C42—H422	0.9900
N2—C14	1.273 (7)	C43—C44	1.516 (8)
N2—C13	1.456 (7)	C43—H431	0.9900
N3—C48	1.283 (8)	C43—H432	0.9900
N3—C47	1.450 (8)	C44—H441	0.9800
N4—C58	1.283 (7)	C44—H442	0.9800
N4—C57	1.453 (7)	C44—H443	0.9800
C1—C2	1.496 (8)	C45—C46	1.498 (8)
C2—C3	1.529 (8)	C46—C47	1.518 (8)
C2—H21	0.9900	C46—H461	0.9900
C2—H22	0.9900	C46—H462	0.9900
С3—Н31	0.9900	C47—H471	0.9900

С3—Н32	0.9900	С47—Н472	0.9900
C4—C5	1.430 (9)	C48—C49	1.446 (9)
C4—H4	0.9500	C48—H48	0.9500
C5—C10	1.395 (9)	C49—C54	1.387 (10)
C5—C6	1.416 (9)	C49—C50	1.414 (9)
C6—C7	1.370 (9)	C50—C51	1.382 (10)
С7—С8	1.368 (11)	C51—C52	1.373 (11)
С7—Н7	0.9500	C51—H51	0.9500
C8—C9	1.394 (11)	C52—C53	1.372 (11)
С8—Н8	0.9500	С52—Н52	0.9500
C9—C10	1.368 (10)	C53—C54	1.368 (11)
С9—Н9	0.9500	С53—Н53	0.9500
С10—Н10	0.9500	С54—Н54	0.9500
C11—C12	1.493 (8)	C55—C56	1.489 (8)
C12—C13	1.519 (8)	C56—C57	1.530 (8)
C12—H121	0.9900	C56—H561	0.9900
C12—H122	0.9900	C56—H562	0.9900
C13—H131	0.9900	C57—H571	0.9900
C13—H132	0.9900	C57—H572	0.9900
C14-C15	1 447 (8)	C_{58} C_{59}	1 449 (8)
C14—H141	0.9500	C58—H58	0.9500
C_{15} C_{20}	1 392 (8)	C59—C64	1 392 (9)
$C_{15} - C_{16}$	1 399 (9)	C59—C60	1 395 (9)
C16-C17	1 388 (8)	C60—C61	1 380 (9)
C17 - C18	1 392 (9)	C61 - C62	1 363 (9)
C17—H17	0.9500	C61 - H61	0.9500
C18 - C19	1,375(10)	C62-C63	1.384(10)
C18—H18	0.9500	C62 - H62	0.9500
C19-C20	1 371 (9)	C63 - C64	1.373(10)
C19—H19	0.9500	C63—H63	0.9500
C20—H20	0.9500	C64—H64	0.9500
$C_{21} - C_{22}$	1 525 (8)	C65—C66	1 517 (8)
C21—H211	0.9900	C65—H651	0.9900
C_{21} H212	0.9900	C65—H652	0.9900
C^{22} C^{23}	1 541 (8)	C66—C67	1 502 (8)
C22—H221	0.9900	C66—H661	0.9900
C22_H222	0.9900	C66—H662	0.9900
C^{23} C^{24}	1 527 (9)	C67 - C68	1 518 (9)
C23—H231	0.9900	C67 - H671	0.9900
C23_H237	0.9900	C67—H672	0.9900
C_{24} H241	0.9900	C68—H681	0.9900
C_{24} H242	0.9800	C68—H682	0.9800
$C_{24} = H_{242}$	0.9800	C68—H683	0.9800
C_{25} C_{26}	1 512 (8)	C69—C70	1 516 (8)
C25—H251	0.9900	С69—Н691	0.9900
C25—H252	0.9900	С69—Н692	0.9900
$C_{26} = C_{27}$	1 492 (8)	C70-C71	1 519 (8)
C26—H261	0.9900	С70—Н701	0.9900

C26—H262	0.9900	С70—Н702	0.9900
C27—C28	1.495 (9)	C71—C72	1.514 (9)
C27—H271	0.9900	С71—Н711	0.9900
С27—Н272	0.9900	С71—Н712	0.9900
C28—H281	0.9800	С72—Н721	0.9800
C28—H282	0.9800	С72—Н722	0.9800
C28—H283	0.9800	С72—Н723	0.9800
O1—Sn1—O2	47.92 (13)	H291—C29—H292	107.9
O1—Sn1—O4	168.40 (14)	C31—C30—C29	113.6 (5)
O1—Sn1—O7	78.96 (14)	С31—С30—Н301	108.9
O1—Sn1—C21	99.87 (19)	С29—С30—Н301	108.9
O1—Sn1—C25	95.4 (2)	С31—С30—Н302	108.9
O2—Sn1—O4	142.74 (13)	С29—С30—Н302	108.9
O2—Sn1—O7	126.82 (14)	H301—C30—H302	107.7
O2—Sn1—C21	80.07 (19)	C30—C31—C32	111.7 (6)
O2—Sn1—C25	78.55 (19)	С30—С31—Н311	109.3
O4—Sn1—O7	90.39 (14)	С32—С31—Н311	109.3
O4—Sn1—C21	88.3 (2)	С30—С31—Н312	109.3
O4—Sn1—C25	84.7 (2)	С32—С31—Н312	109.3
O7—Sn1—C21	111.7 (2)	H311—C31—H312	107.9
O7—Sn1—C25	114.05 (18)	С31—С32—Н321	109.5
C21—Sn1—C25	133.7 (2)	С31—С32—Н322	109.5
O5—Sn2—O7	88.76 (14)	H321—C32—H322	109.5
O5—Sn2—O8	164.11 (14)	С31—С32—Н323	109.5
O5—Sn2—O9	131.33 (13)	H321—C32—H323	109.5
O5—Sn2—C29	84.77 (19)	Н322—С32—Н323	109.5
O5—Sn2—C33	88.4 (2)	C34—C33—Sn2	117.1 (4)
O7—Sn2—O8	76.01 (14)	С34—С33—Н331	108.0
O7—Sn2—O9	139.90 (13)	Sn2—C33—H331	108.0
O7—Sn2—C29	107.64 (19)	С34—С33—Н332	108.0
O7—Sn2—C33	109.61 (19)	Sn2—C33—H332	108.0
O8—Sn2—O9	64.10 (12)	H331—C33—H332	107.3
O8—Sn2—C29	95.4 (2)	C33—C34—C35	113.6 (5)
O8—Sn2—C33	100.9 (2)	C33—C34—H341	108.9
O9—Sn2—C29	81.15 (17)	C35—C34—H341	108.9
O9—Sn2—C33	75.58 (18)	С33—С34—Н342	108.9
C29—Sn2—C33	141.9 (2)	С35—С34—Н342	108.9
O1—Sn3—O7	65.19 (12)	H341—C34—H342	107.7
O1—Sn3—O8	140.08 (13)	C36—C35—C34	113.4 (6)
O1—Sn3—O13	129.85 (13)	С36—С35—Н351	108.9
O1—Sn3—C37	76.61 (17)	C34—C35—H351	108.9
O1—Sn3—C41	79.64 (16)	С36—С35—Н352	108.9
O7—Sn3—O8	75.04 (13)	С34—С35—Н352	108.9
O7—Sn3—O13	164.68 (13)	H351—C35—H352	107.7
O7—Sn3—C37	99.74 (18)	С35—С36—Н361	109.5
O7—Sn3—C41	95.43 (18)	С35—С36—Н362	109.5
O8—Sn3—O13	90.05 (14)	H361—C36—H362	109.5

O8—Sn3—C37	108.06 (18)	С35—С36—Н363	109.5
O8—Sn3—C41	108.35 (18)	H361—C36—H363	109.5
O13—Sn3—C37	88.07 (18)	H362—C36—H363	109.5
O13—Sn3—C41	85.82 (18)	C38—C37—Sn3	115.2 (4)
C37—Sn3—C41	143.0 (2)	C38—C37—H371	108.5
O8—Sn4—O9	78.42 (14)	Sn3—C37—H371	108.5
O8—Sn4—O10	127.46 (14)	С38—С37—Н372	108.5
O8—Sn4—O12	90.96 (14)	Sn3—C37—H372	108.5
O8—Sn4—C65	113.08 (19)	H371—C37—H372	107.5
O8—Sn4—C69	111.7 (2)	C39—C38—C37	112.5 (5)
O9—Sn4—O10	49.09 (13)	C39—C38—H381	109.1
09—Sn4—012	168.21 (14)	C37—C38—H381	109.1
09—Sn4—C65	95.69 (19)	C39—C38—H382	109.1
09—Sn4—C69	101.3 (2)	C37—C38—H382	109.1
010 - Sn4 - 012	141.50(14)	H381—C38—H382	107.8
010 - Sn4 - C65	79.04 (18)	C_{38} C_{39} C_{40}	112.6 (5)
010 - Sn4 - C69	80.90 (19)	C38—C39—H391	109.1
012 - 8n4 - C65	83 66 (19)	C40—C39—H391	109.1
$012 - \text{Sn}^{-1} - \text{C69}$	873(2)	C38—C39—H392	109.1
C65 = Sn4 = C69	1344(2)	C40-C39-H392	109.1
C1 = O1 = Sn1	1142(4)	H391 - C39 - H392	107.8
C1 = O1 = Sn3	1490(4)	C_{39} C_{40} H_{401}	107.0
sn1 = 01 = sn3	95 95 (13)	C_{39} C_{40} H_{402}	109.5
C1 = O2 = Sn1	76.9 (3)	H401 - C40 - H402	109.5
C6	109 5	C_{39} C_{40} H_{403}	109.5
$C_{11} = 04 = S_{n1}$	133 7 (4)	H401 - C40 - H403	109.5
$C11 = 05 = Sn^2$	133.1(4)	H402 - C40 - H403	109.5
$C_{16} - O_{6} - H_{6}$	109 5	C42 - C41 - Sn3	114 3 (4)
$s_{n1} = 07 = s_{n2}$	1367(2)	C_{42} C_{41} H_{411}	108 7
sn1 - 07 - sn2	130.7(2) 118 47 (17)	Sn3-C41-H411	108.7
$s_{n2} = 07 = s_{n3}$	104.34(15)	C42 - C41 - H412	108.7
$s_{n2} = 0.8 = s_{n3}$	104.61 (16)	Sn3-C41-H412	108.7
sn2 = 08 = sn3	120.77(17)	H411 - C41 - H412	107.6
$s_{n2} = 08 = 5n4$	120.77(17) 134.05(19)	C43 - C42 - C41	107.0 112.9(5)
$s_{n2} = 08 - s_{n4}$	94 56 (13)	C_{43} C_{42} C_{42} C_{42} C_{43} C_{43} C_{42} C_{42} C_{42} C_{43} C	100.0
$C_{45} = 09 = 5114$	111 1 (4)	C41 - C42 - H421	109.0
$C_{45} = 0^{-5} = 5$	111.1(4) 1527(4)	$C_{41} = C_{42} = H_{421}$	109.0
$C_{45} = 0.000 = 0.0000 = 0.0000 = 0.00000 = 0.00000000$	132.7(4)	$C_{43} = C_{42} = H_{422}$	109.0
$C_{45} = 0.10 = 0.011$ H11	109.5	$H_{42} = H_{42} = H_{42}$	109.0
$C_{55} = 012 - 8n4$	109.5 133.0 (4)	$C_{44} C_{42} C_{42} C_{42} C_{42}$	117.0
$C_{55} = 012 = 314$	133.0(4) 1201(4)	C44 - C43 - C42	112.2 (0)
$C_{55} = 013 = 313$	100.5	$C_{44} = C_{45} = H_{451}$	109.2
$C_{00} - 014 - H14$	109.5	$C42 - C43 - \Pi 431$	109.2
C4 - N1 - C3	119.7 (0)	C44 - C43 - H432	109.2
C_{14} N_{2} C_{13} C_{47}	119.0 (5)	U42 - U43 - H432	109.2
$\begin{array}{c} U43 \\ U43$	118.3 (0)	H451 - U45 - H452	107.9
C_{30} N4 C_{3}	118.7 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
02 - 01 - 01	120.9 (6)	U43-U44-H442	109.5
$O_2 - C_1 - C_2$	122.5 (5)	H441—C44—H442	109.5

O1—C1—C2	116.6 (5)	C43—C44—H443	109.5
C1—C2—C3	111.7 (5)	H441—C44—H443	109.5
C1—C2—H21	109.3	H442—C44—H443	109.5
C3—C2—H21	109.3	O10—C45—O9	122.1 (6)
C1—C2—H22	109.3	O10—C45—C46	122.0 (5)
C3—C2—H22	109.3	O9—C45—C46	115.9 (6)
H21—C2—H22	107.9	C45—C46—C47	111.8 (6)
N1—C3—C2	109.4 (5)	C45—C46—H461	109.3
N1—C3—H31	109.8	C47—C46—H461	109.3
C2-C3-H31	109.8	C45-C46-H462	109.3
N1-C3-H32	109.8	C47 - C46 - H462	109.3
C_{2} C_{3} H_{32}	109.8	H461-C46-H462	107.9
H_{31} C_{3} H_{32}	109.0	N_{3} C47 C46	107.9
N1 - C4 - C5	121.7 (6)	$N_3 - C_47 - H_471$	109.6
N1 - C4 - H4	119.1	$C_{46} C_{47} H_{471}$	109.6
$C_5 - C_4 - H_4$	119.1	N3 - C47 - H472	109.6
C_{10} C_{5} C_{6}	119.1 118.1(7)	$C_{46} = C_{47} = H_{472}$	109.0
$C_{10} = C_{5} = C_{4}$	110.1(7) 120.3(7)	$H_{471} = C_{47} = H_{472}$	109.0
$C_{10} = C_{10} = C_{10}$	120.5(7) 121.5(6)	$M_{-}^{-} = M_{-}^{-} = M_{-$	108.1
$C_{0} - C_{1} - C_{4}$	121.5(0) 110 5 (7)	$N_{3} = C_{48} = C_{49}$	123.4 (0)
03 - 00 - 07	119.5 (7)	N_{3} $-C_{40}$ $-C_{140}$ H_{40}	118.3
03-00-03	120.0(0)	$C_{49} - C_{40} - C_{50}$	118.3 118.3 (7)
$C^{2} = C^{2} = C^{2}$	119.9(7) 120.8(8)	$C_{54} - C_{49} - C_{50}$	110.3(7)
C_{0}	120.8 (8)	$C_{54} - C_{49} - C_{48}$	122.3(7)
C_{0}	119.0	C_{30} C_{49} C_{48}	119.5(7)
$C_{0} - C_{1} - H_{1}$	119.0	$011 - C_{50} - C_{40}$	117.3(7)
$C_{1} = C_{2} = C_{2}$	120.4 (8)	011 - 0.00 - 0.49	123.0(7)
$C = C = H \delta$	119.8	$C_{51} = C_{50} = C_{49}$	119.5 (8)
C9—C8—H8	119.8	$C_{52} = C_{51} = C_{50}$	120.4 (8)
C10-C9-C8	119.3 (8)	C52—C51—H51	119.8
C10—C9—H9	120.4	C50—C51—H51	119.8
C8—C9—H9	120.4	C53—C52—C51	120.5 (9)
C9—C10—C5	121.5 (8)	C53—C52—H52	119.7
C9—C10—H10	119.3	C51—C52—H52	119.7
С5—С10—Н10	119.3	C54—C53—C52	119.9 (9)
05-011-04	123.9 (5)	C54—C53—H53	120.1
O5—C11—C12	118.8 (5)	С52—С53—Н53	120.1
O4—C11—C12	117.1 (5)	C53—C54—C49	121.3 (8)
C11—C12—C13	114.2 (5)	C53—C54—H54	119.4
C11—C12—H121	108.7	C49—C54—H54	119.4
C13—C12—H121	108.7	O12—C55—O13	123.5 (5)
C11—C12—H122	108.7	O12—C55—C56	119.0 (5)
C13—C12—H122	108.7	O13—C55—C56	117.2 (5)
H121—C12—H122	107.6	C55—C56—C57	112.8 (5)
N2—C13—C12	110.8 (5)	C55—C56—H561	109.0
N2—C13—H131	109.5	С57—С56—Н561	109.0
C12—C13—H131	109.5	С55—С56—Н562	109.0
N2—C13—H132	109.5	С57—С56—Н562	109.0
C12—C13—H132	109.5	H561—C56—H562	107.8

H131—C13—H132	108.1	N4—C57—C56	109.9 (5)
N2-C14-C15	122.8 (6)	N4—C57—H571	109.7
N2	118.6	С56—С57—Н571	109.7
C15—C14—H141	118.6	N4—C57—H572	109.7
C20—C15—C16	118.8 (6)	С56—С57—Н572	109.7
C20—C15—C14	119.6 (6)	Н571—С57—Н572	108.2
C16—C15—C14	121.6 (6)	N4—C58—C59	123.3 (6)
O6—C16—C17	118.1 (6)	N4—C58—H58	118.3
O6—C16—C15	121.4 (6)	С59—С58—Н58	118.3
C17—C16—C15	120.5 (6)	C64—C59—C60	118.8 (6)
C16—C17—C18	118.7 (7)	C64—C59—C58	119.8 (6)
С16—С17—Н17	120.7	C60—C59—C58	121.4 (6)
C18—C17—H17	120.7	O14—C60—C61	117.8 (6)
C19—C18—C17	121.4 (7)	O14—C60—C59	122.1 (6)
C19—C18—H18	119.3	C61—C60—C59	120.1 (7)
C17—C18—H18	119.3	C62—C61—C60	120.4 (7)
C20-C19-C18	119.5 (7)	С62—С61—Н61	119.8
С20—С19—Н19	120.2	C60—C61—H61	119.8
C18—C19—H19	120.2	C61—C62—C63	120.3 (7)
C19—C20—C15	121.0 (7)	С61—С62—Н62	119.9
C19—C20—H20	119.5	С63—С62—Н62	119.9
C15—C20—H20	119.5	C64—C63—C62	120.1 (7)
C22—C21—Sn1	115.5 (4)	С64—С63—Н63	120.0
C22—C21—H211	108.4	С62—С63—Н63	120.0
Sn1—C21—H211	108.4	C63—C64—C59	120.3 (7)
C22—C21—H212	108.4	С63—С64—Н64	119.8
Sn1—C21—H212	108.4	С59—С64—Н64	119.8
H211—C21—H212	107.5	C66—C65—Sn4	113.4 (4)
C21—C22—C23	112.3 (5)	С66—С65—Н651	108.9
C21—C22—H221	109.1	Sn4—C65—H651	108.9
C23—C22—H221	109.1	С66—С65—Н652	108.9
C21—C22—H222	109.1	Sn4—C65—H652	108.9
C23—C22—H222	109.1	H651—C65—H652	107.7
H221—C22—H222	107.9	C67—C66—C65	113.9 (5)
C24—C23—C22	112.1 (6)	С67—С66—Н661	108.8
C24—C23—H231	109.2	С65—С66—Н661	108.8
C22—C23—H231	109.2	С67—С66—Н662	108.8
C24—C23—H232	109.2	С65—С66—Н662	108.8
С22—С23—Н232	109.2	H661—C66—H662	107.7
H231—C23—H232	107.9	C66—C67—C68	113.4 (6)
C23—C24—H241	109.5	С66—С67—Н671	108.9
C23—C24—H242	109.5	С68—С67—Н671	108.9
H241—C24—H242	109.5	С66—С67—Н672	108.9
C23—C24—H243	109.5	С68—С67—Н672	108.9
H241—C24—H243	109.5	H671—C67—H672	107.7
H242—C24—H243	109.5	С67—С68—Н681	109.5
C26—C25—Sn1	115.3 (4)	С67—С68—Н682	109.5
C26—C25—H251	108.4	H681—C68—H682	109.5

Sn1—C25—H251	108.4	С67—С68—Н683	109.5
C26—C25—H252	108.4	H681—C68—H683	109.5
Sn1—C25—H252	108.4	H682—C68—H683	109.5
H251—C25—H252	107.5	C70—C69—Sn4	116.3 (4)
C27—C26—C25	115.3 (5)	С70—С69—Н691	108.2
C27—C26—H261	108.5	Sn4—C69—H691	108.2
C25—C26—H261	108.5	С70—С69—Н692	108.2
С27—С26—Н262	108.5	Sn4—C69—H692	108.2
С25—С26—Н262	108.5	H691—C69—H692	107.4
H261—C26—H262	107.5	C69—C70—C71	112.5 (5)
C26—C27—C28	115.7 (7)	С69—С70—Н701	109.1
С26—С27—Н271	108.4	С71—С70—Н701	109.1
C28—C27—H271	108.4	С69—С70—Н702	109.1
С26—С27—Н272	108.4	С71—С70—Н702	109.1
C28—C27—H272	108.4	H701—C70—H702	107.8
H271—C27—H272	107.4	C72—C71—C70	113.5 (6)
C_{27} C_{28} H_{281}	109.5	C72—C71—H711	108.9
C27—C28—H282	109.5	C70—C71—H711	108.9
H281—C28—H282	109.5	C72—C71—H712	108.9
C27—C28—H283	109.5	C70—C71—H712	108.9
$H_{281} - C_{28} - H_{283}$	109.5	H711—C71—H712	107.7
H282—C28—H283	109.5	C71 - C72 - H721	109.5
C_{30} C_{29} S_{n2}	112.0 (4)	С71—С72—Н722	109.5
C30—C29—H291	109.2	H721—C72—H722	109.5
Sn2—C29—H291	109.2	С71—С72—Н723	109.5
C30—C29—H292	109.2	H721—C72—H723	109.5
Sn2—C29—H292	109.2	H722—C72—H723	109.5
Sn1—O2—C1—O1	2.8 (5)	Sn3—C37—C38—C39	176.0 (4)
Sn1—O2—C1—C2	178.7 (6)	C37—C38—C39—C40	179.1 (6)
Sn1—O1—C1—O2	-4.1 (7)	Sn3—C41—C42—C43	-176.1 (4)
Sn3—O1—C1—O2	-169.8 (4)	C41—C42—C43—C44	-166.9(5)
Sn1—O1—C1—C2	179.7 (4)	Sn4—O10—C45—O9	-3.7(5)
Sn3—O1—C1—C2	14.1 (10)	Sn4—O10—C45—C46	177.5 (6)
O2-C1-C2-C3	43.1 (8)	Sn4—O9—C45—O10	5.2 (7)
01-C1-C2-C3	-140.8(5)	Sn2—O9—C45—O10	164.3 (5)
C4—N1—C3—C2	-116.4 (6)	Sn4—O9—C45—C46	-175.9(4)
C1—C2—C3—N1	62.4 (7)	Sn2—O9—C45—C46	-16.9(11)
C3—N1—C4—C5	176.3 (5)	O10—C45—C46—C47	-43.4(9)
N1-C4-C5-C10	179.1 (6)	09-C45-C46-C47	137.8 (6)
N1-C4-C5-C6	-3.7(10)	C48—N3—C47—C46	121.0(7)
C10—C5—C6—O3	-178.6(6)	C45—C46—C47—N3	-63.9(7)
C4—C5—C6—O3	4.2 (10)	C47—N3—C48—C49	-178.0(5)
C10—C5—C6—C7	1.9 (10)	N3-C48-C49-C54	-177.5(7)
C4—C5—C6—C7	-175.3 (7)	N3-C48-C49-C50	3.6 (10)
03-C6-C7-C8	178.6 (8)	C54—C49—C50—O11	178.9 (7)
C5—C6—C7—C8	-1.9 (12)	C48—C49—C50—O11	-2.0(10)
C6—C7—C8—C9	0.1 (14)	C54—C49—C50—C51	-0.6(10)

C7—C8—C9—C10	1.6 (14)	C48—C49—C50—C51	178.4 (6)
C8—C9—C10—C5	-1.5 (13)	O11—C50—C51—C52	-178.2 (7)
C6—C5—C10—C9	-0.2 (11)	C49—C50—C51—C52	1.4 (12)
C4—C5—C10—C9	177.0 (7)	C50—C51—C52—C53	-0.2 (14)
Sn2—O5—C11—O4	24.4 (8)	C51—C52—C53—C54	-1.7 (14)
Sn2—O5—C11—C12	-151.2 (4)	C52—C53—C54—C49	2.4 (13)
Sn1—O4—C11—O5	21.5 (8)	C50—C49—C54—C53	-1.3 (11)
Sn1—O4—C11—C12	-162.8 (3)	C48—C49—C54—C53	179.7 (7)
O5—C11—C12—C13	-158.8 (5)	Sn4—O12—C55—O13	-20.6 (8)
O4—C11—C12—C13	25.3 (7)	Sn4—O12—C55—C56	165.5 (4)
C14—N2—C13—C12	-129.2 (6)	Sn3—O13—C55—O12	-31.0 (8)
C11—C12—C13—N2	66.6 (7)	Sn3—O13—C55—C56	143.1 (4)
C13—N2—C14—C15	-179.0 (5)	O12—C55—C56—C57	-27.0 (8)
N2-C14-C15-C20	-178.2 (6)	O13—C55—C56—C57	158.6 (5)
N2-C14-C15-C16	1.9 (10)	C58—N4—C57—C56	129.5 (6)
C20-C15-C16-O6	-179.7 (6)	C55—C56—C57—N4	-63.6(7)
C14—C15—C16—O6	0.2 (10)	C57—N4—C58—C59	-178.4 (5)
C20-C15-C16-C17	-2.5 (10)	N4—C58—C59—C64	180.0 (6)
C14—C15—C16—C17	177.4 (6)	N4-C58-C59-C60	-0.1 (10)
O6—C16—C17—C18	179.1 (6)	C64—C59—C60—O14	178.9 (6)
C15—C16—C17—C18	1.8 (10)	C58—C59—C60—O14	-1.0 (10)
C16—C17—C18—C19	-0.7 (11)	C64—C59—C60—C61	-1.3 (10)
C17—C18—C19—C20	0.2 (12)	C58—C59—C60—C61	178.8 (6)
C18—C19—C20—C15	-0.9 (11)	O14—C60—C61—C62	-178.5 (6)
C16—C15—C20—C19	2.0 (10)	C59—C60—C61—C62	1.6 (11)
C14—C15—C20—C19	-177.9 (6)	C60—C61—C62—C63	-0.5 (11)
Sn1—C21—C22—C23	-178.1 (5)	C61—C62—C63—C64	-1.0 (11)
C21—C22—C23—C24	-179.8 (6)	C62—C63—C64—C59	1.4 (11)
Sn1—C25—C26—C27	173.7 (5)	C60—C59—C64—C63	-0.3 (10)
C25—C26—C27—C28	177.7 (7)	C58—C59—C64—C63	179.7 (6)
Sn2—C29—C30—C31	169.9 (4)	Sn4—C65—C66—C67	-169.9 (5)
C29—C30—C31—C32	173.5 (6)	C65—C66—C67—C68	-173.5 (6)
Sn2—C33—C34—C35	177.9 (4)	Sn4—C69—C70—C71	-178.7 (4)
C33—C34—C35—C36	66.6 (9)	C69—C70—C71—C72	177.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O3—H3…N1	0.84	1.83	2.575 (7)	147
O6—H6…N2	0.84	1.88	2.616 (6)	146
O11—H11…N3	0.84	1.87	2.602 (7)	145
O14—H14…N4	0.84	1.90	2.637 (6)	147