Interpretation of NMR spectra of steroids ## **Strategy and Conclusions** **Sum formula :** Calculate the double-bond equivalents from the sum formula $C_{27}H_{44}O_7$. $$DBE = \frac{(2*27+2)-44}{2} = 6$$ ¹H: The angular CH₃ groups at 0.89 ppm and 0.96 ppm ¹³C{¹H}: Number the ¹³C signals sequentially, starting with No. 1 for the most high field signal. 27 Carbons **HSQC:** Assign the ¹H signals to the corresponding ¹³C signals. ¹H: Copy the numeration of the ¹H signals in the HSQC to the ¹H spectra. Use the integrals to define the signals or some integral regions. And use the DEPT experiments to assign the CH_3 , CH_2 , CH and C groups. 1 CH₃ 2 CH₃ 3 CH₂ 4 CH₂ 5 CH₃ 6 CH₂ 7 CH₃ 8 CH₃ 9 CH₂ 10 CH₂ 11 CH₂ 12 CH 13 CH₂ 14 C 15 CH₂ 16 C 17 CH 18 CH 19 CH 20 CH 21 C C-OH 22 C 23 CH 24 C 25 CH Double bond26 C region 27 C Ketone → DBE = 6: "backbone" of steroids has already 4 DBE. So there are just 2 additional DBE 27 Carbons: does agree with the sum formula $C_{27}H_{44}O_7$. **HMBC:** Use the HMBC to put the fragment around the angular CH_3 together. $$H(5) = C(12), C(13), C(14), C(18), [C(20)]$$ $H(1) = C(10), C(16), C(17), C(24)$ **HSQC-TOCSY:** Use the HSQC-TOCSY instead of the DQF-COSY to put several fragments together, because in the DQF-COSY-Spectra the peak overlapping is enormous. C(4) = H(10), H(12)Link between the two angular CH_3 fragments. $\begin{array}{lll} C(20) = H(15/13), \ H(20) & C(15) = H(6), \ H(15) \\ C(13) = H(20), \ H(13) & C(3) = H(9), \ H(17), \ H(3) \\ C(18) = H(11), \ H(18) & C(23) = H(6), \ H(23) \\ C(17) = H(3), \ H(17) & C(11) = H(19), \ H(11) \end{array}$ The exact position of C(24) and C(17) is not defined yet. ## **HMBC:** Use the HMBC to put more fragments together. H(13) = C(5), C(12), C(14, C(18), [C(26)], C(19/20) C(19) = H(20) H(25) = C(12), C(18), C(24) H(8) = C(7), C(15), C(21) H(7) = C(8), C(15), C(21) H(2) = C(17), C(22), C(23)C(22) = H(3a) There is just C(26) and C(27) left to close the ring at C(18), C(12), C(24). | CII, | CIII, NOESY: The configuration at the individual carbons are determined by using the NOESY. ¹H: The ¹H signal of H(19) has only small couplings no big ones. Therefore H(19) has no axial-axial coupling to the axial H(20). So H(19) is equatorial. The configuration at C(11) and C(3) can not be determined exactly because the relevant signals are overlapping. ## **Remember:** To determine the configuration **never** use NOEs from H_1 - H_2 , H_2 - H_3 , ... ! Always look for NOEs from H_1 - H_3 , H_3 - H_5 , ... It is not allowed to deduce stereochemistry from the absence of a NOE!