Interpretation of NMR spectra of steroids

Strategy and Conclusions

Sum formula : Calculate the double-bond equivalents from the

sum formula $C_{27}H_{44}O_7$.

$$DBE = \frac{(2*27+2)-44}{2} = 6$$

¹H: The angular CH₃ groups at 0.89 ppm and 0.96 ppm

¹³C{¹H}: Number the ¹³C signals sequentially, starting

with No. 1 for the most high field signal.

27 Carbons

HSQC: Assign the ¹H signals to the corresponding ¹³C

signals.

¹H: Copy the numeration of the ¹H signals in the

HSQC to the ¹H spectra.

Use the integrals to define the signals or some integral regions. And use the DEPT experiments to assign the CH_3 , CH_2 , CH and C

groups.

1 CH₃

2 CH₃

3 CH₂

4 CH₂

5 CH₃

6 CH₂

7 CH₃

8 CH₃

9 CH₂

10 CH₂

11 CH₂

12 CH

13 CH₂

14 C

15 CH₂

16 C

17 CH

18 CH

19 CH 20 CH

21 C C-OH

22 C

23 CH

24 C

25 CH Double bond26 C region

27 C Ketone

→ DBE = 6: "backbone" of steroids has already 4 DBE. So there are just 2 additional DBE

27 Carbons: does agree with the sum formula $C_{27}H_{44}O_7$.

HMBC:

Use the HMBC to put the fragment around the angular CH_3 together.

$$H(5) = C(12), C(13), C(14), C(18), [C(20)]$$

 $H(1) = C(10), C(16), C(17), C(24)$

HSQC-TOCSY:

Use the HSQC-TOCSY instead of the DQF-COSY to put several fragments together, because in the DQF-COSY-Spectra the peak overlapping is enormous.

C(4) = H(10), H(12)Link between the two angular CH_3 fragments.

 $\begin{array}{lll} C(20) = H(15/13), \ H(20) & C(15) = H(6), \ H(15) \\ C(13) = H(20), \ H(13) & C(3) = H(9), \ H(17), \ H(3) \\ C(18) = H(11), \ H(18) & C(23) = H(6), \ H(23) \\ C(17) = H(3), \ H(17) & C(11) = H(19), \ H(11) \end{array}$

The exact position of C(24) and C(17) is not defined yet.

HMBC: Use the HMBC to put more fragments together.

H(13) = C(5), C(12), C(14, C(18), [C(26)], C(19/20) C(19) = H(20) H(25) = C(12), C(18), C(24)

H(8) = C(7), C(15), C(21) H(7) = C(8), C(15), C(21) H(2) = C(17), C(22), C(23)C(22) = H(3a)

There is just C(26) and C(27) left to close the ring at C(18), C(12), C(24).

| CII, | CIII, | CIII,

NOESY:

The configuration at the individual carbons are determined by using the NOESY.

¹H:

The ¹H signal of H(19) has only small couplings no big ones. Therefore H(19) has no axial-axial coupling to the axial H(20). So H(19) is equatorial.

The configuration at C(11) and C(3) can not be determined exactly because the relevant signals are overlapping.

Remember:

To determine the configuration **never** use NOEs from H_1 - H_2 , H_2 - H_3 , ... !

Always look for NOEs from H_1 - H_3 , H_3 - H_5 , ...

It is not allowed to deduce stereochemistry from the absence of a NOE!